Skip to main content

Innovation for the ‘Bottom 100 Million’: Eliminating Neglected Tropical Diseases in the Americas

  • Chapter
  • First Online:
Hot Topics in Infection and Immunity in Children IX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 764))

Abstract

An estimated 100 million people in the Latin American and Caribbean (LAC) region live on less than US$2 per day, while another 46 million people in the US live below that nation’s poverty line. Almost all of the ‘bottom 100 million’ people suffer from at least one neglected tropical disease (NTD), including one-half of the poorest people in the region infected with hookworms, 10 % with Chagas disease, and up to 1–2 % with dengue, schistosomiasis, and/or leishmaniasis. In the US, NTDs such as Chagas disease, cysticercosis, toxocariasis, and trichomoniasis are also common among poor populations. These NTDs trap the poorest people in the region in poverty, because of their impact on maternal and child health, and occupational productivity. Through mass drug administration (MDA), several NTDs are on the verge of elimination in the Americas, including lymphatic filariasis, onchocerciasis, trachoma, and possibly leprosy. In addition, schistosomiasis may soon be eliminated in the Caribbean. However, for other NTDs including hookworm infection, Chagas disease, dengue, schistosomiasis, and leishmaniasis, a new generation of ‘anti-poverty vaccines’ will be required. Several vaccines for dengue are under development by multinational pharmaceutical companies, whereas others are being pursued through non-profit product development partnerships (PDPs), in collaboration with developing country manufacturers in Brazil and Mexico. The Sabin Vaccine Institute PDP is developing a primarily preventive bivalent recombinant human hookworm vaccine, which is about to enter phase 1 clinical testing in Brazil, as well as a new therapeutic Chagas disease vaccine in collaboration with several Mexican institutions. The Chagas disease vaccine would be administered to seropositive patients to delay or prevent the onset of Chagasic cardiomyopathy (secondary prevention). Together, MDA and the development of new anti-poverty vaccines afford an opportunity to implement effective control and elimination strategies for the major NTDs in the Americas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://data.worldbank.org/topic/poverty. Accessed 3 Sept 2011

    Google Scholar 

  2. http://www.ruralpovertyportal.org/web/guest/region/home/tags/americas. Accessed 3 Sept 2011

  3. http://www.eoearth.org/article/Human_Development_Index_for_Latin_America_Caribbean_Nations. Accessed 3 Sept 2011

  4. http://www.census.gov/newsroom/releases/archives/income_wealth/cb11-157.html. Accessed 13 Sept 2011

  5. Hotez PJ (2008) Neglected infections of poverty in the United States of America. PLoS Negl Trop Dis 2:e256

    Article  Google Scholar 

  6. Hotez PJ (2011) America’s most distressed areas and their neglected infections: the United States Gulf Coast and the District of Columbia. PLoS Negl Trop Dis 5:e843

    Article  Google Scholar 

  7. Hotez PJ (2010) Neglected infections of poverty among the indigenous peoples of the Arctic. PLoS Negl Trop Dis 4:e606

    Article  Google Scholar 

  8. http://www.worldhunger.org/articles/Learn/world%20hunger%20facts%202002.htm. Accessed 3 Sept 2011

  9. Hotez PJ, Bottazzi ME, Franco-Paredes C, Ault S, Periago MR (2008) The neglected tropical diseases of Latin America and the Caribbean: a review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl Trop Dis 2:e300

    Article  Google Scholar 

  10. Hotez PJ, Fenwick A, Kumaresan J, Molyneux DH, Ehrlich Sachs S, Sachs JD, Savioli L (2007) Control of neglected tropical diseases. N Engl J Med 357:1018–1027

    Article  CAS  Google Scholar 

  11. Hotez PJ, Fenwick A, Savioli L, Molyneux DH (2009) Rescuing the bottom billion through control of neglected tropical diseases. Lancet 373:157–155

    Article  Google Scholar 

  12. World Health Organization (2010) Working to overcome the global impact of neglected tropical diseases. First WHO report on neglected tropical diseases. Geneva. http://www.who.int/neglected_diseases/2010report/en/index.html. p 172

  13. Hotez PJ, Ferris M (2006) The anti-poverty vaccines. Vaccine 24:5787–5799

    Article  Google Scholar 

  14. Furtado JM, Smith JR, Belfort R, Gattey D, Winthrop KL (2011) Toxoplasmosis: a global threat. J Global Infect Dis 3:281–284

    Article  Google Scholar 

  15. Lammie PJ, Lindo JF, Secor WE, Vasquez J, Ault SK et al (2007) Eliminating lymphatic filariasis, onchocerciasis and schistosomiasis from the Americas: breaking a historical legacy of slavery. PLoS Negl Trop Dis 1:e71

    Article  Google Scholar 

  16. Tapia-Conyer R, Mendez-Galvan JF, Gallardo-Rincon H (2009) The growing burden of dengue in Latin America. J Clin Virol 46(Suppl 2):S3–6

    Article  Google Scholar 

  17. Hotez PJ (2008) The giant anteater in the room: Brazil’s neglected tropical diseases problem. PLoS Negl Trop Dis 2:e177

    Article  Google Scholar 

  18. Hotez PJ, Brooker S, Bethony JM, Bottazzi ME, Loukas A, Xiao SH (2004) Hookworm infection. N Engl J Med 351:799–807

    Article  CAS  Google Scholar 

  19. Smith JL, Brooker S (2010) Impact of hookworm infection and deworming on anemia in non-pregnant populations: a systematic review. Trop Med Int Health 15:776–795

    Article  Google Scholar 

  20. Brooker S, Hotez PJ, Bundy DAP (2008) Hookworm-related anaemia among pregnant women: a systematic review. PLoS Negl Trop Dis 2:e291

    Article  Google Scholar 

  21. Brooker S, Jardim-Botelho A, Quinnell RJ, Geiger SM, Caldas IR, Fleming F, Hotez PJ, Correa-Oliveira R, Rodrigues LC, Bethony JM (2007) Age-related changes in hookworm infection, anaemia and iron deficiency in an area of high Necator americanus hookworm transmission in south-eastern Brazil. Trans R Soc Trop Med Hyg 101:146–154

    Article  Google Scholar 

  22. Larocque R, Casapia M, Gotuzzo E, MacLean JD, Soto JC et al (2006) A double-blind randomized controlled trial of antenatal mebendazole to educe low birthweight in a hookworm-endemic area of Peru. Trop Med Int Health 11:1485–1495

    Article  CAS  Google Scholar 

  23. Theiler RN, Rasmussen SA, Treadwell TA, Jamieson DJ (2008) Emerging and zoonotic infections in women. Infect Dis Clin North Am 22:755–772

    Article  Google Scholar 

  24. Siriano L da R, Luguetti AO, Avelar JB, Marra NL, de Castro AM (2011) Chagas disease: increased parasitemia during pregnancy detected by hemoculture. Am J Trop Med Hyg 84:569–574

    Article  Google Scholar 

  25. Perez-Lopez FR, Chedraui P (2010) Chagas disease in pregnancy: a non-endemic problem in a globalized world. Arch Gynecol Obstet 282:595–599

    Article  Google Scholar 

  26. Buekens P, Almendares O, Carlier Y, Dumonteil E, Eberhard M, Gamboa-Leon R, James M, Padilla N, Wesson D, Xiong X (2008) Mother-to-child transmission of Chagas disease in North America: why don’t we do more? Matern Child Health J 12:283–286

    Article  Google Scholar 

  27. Giraldo D, Sant’anna C, Perisse AR, March MD, Souza AP, Mendes A, Bonfim M, Hofer CB (2011) Characteristics of children hospitalized with dengue fever in an outbreak in Rio de Janeiro, Brazil. Trans R Soc Trop Med Hyg 105(10):601–603 (Epub 2011 Aug 19)

    Article  Google Scholar 

  28. Rodriguez-Barraquer I, Cordeiro MT, Braga C, de Souza WV, Marques ET, Cummings DA (2011) From re-emergence to hyperendemicity: the natural history of the dengue epidemic in Brazil. PLoS Negl Trop Dis 5:e935

    Article  Google Scholar 

  29. Pouliot SH, Xiong X, Harville E, Paz-Soldan V, Tomashek KM, Breart G, Buekens P (2010) Maternal dengue and pregnancy outcomes: a systematic review. Obstet Gynecol Surg 65:107–118

    Google Scholar 

  30. Bleakley H (2007) Disease and development: evidence from hookworm eradication in the American South. Q J Econ 122:73–117

    Article  Google Scholar 

  31. Lee BY, Bacon KM, Connor DL, Willig AM, Bailey RR (2010) The potential economic value of a Trypanosoma cruzi (Chagas disease) vaccine in Latin America. PLoS Negl Trop Dis 4(12):e916

    Article  Google Scholar 

  32. Garg P, Nagpal J, Khairnar P, Seneviratne SL (2008) Economic burden of dengue infections in India. Trans R Soc Trop Med Hyg 102:570–577

    Article  Google Scholar 

  33. Beatty ME, Beutels P, Meltzer MI, Shepard DS, Hombach J, Hutubessy R, Dessis D, Coudeveille L, Dervaux B, Wichmann O, Margolis HS, Kuritsky JN (2011) Health economics of dengue: a systematic literature review and expert panel’s assessment. Am J Trop Med 84:473–488

    Article  Google Scholar 

  34. Hotez PJ, Thompson TG (2009) Waging peace through neglected tropical disease control: a US foreign policy for the bottom billion. PLoS Negl Trop Dis 3:e346

    Article  Google Scholar 

  35. Beyrer C, Villar JC, Suwanvanichkij V, Singh S, Baral SD et al (2007) Neglected diseases, civil conflicts, and the right to health. Lancet 370:619–627

    Article  Google Scholar 

  36. Hotez PJ (2009) Mass drug administration and the integrated control of the world’s high prevalence neglected tropical diseases. Clin Pharamcol Therap 85:659–664

    Article  CAS  Google Scholar 

  37. Schneider MC, Aguilera XP, Barbosa da Silva Jr J, Ault SK, Najera P, Martinez J, Requejo R, Nicholls RS, Yadon Z, Silva JC, Leanes LF, Periago MR (2011) Elimination of neglected diseases in Latin America and the Caribbean: a mapping of selected diseases. PLoS Negl Trop Dis 5:e964

    Article  Google Scholar 

  38. Hotez P (2011) Enlarging the “audacious goal”: elimination of the world’s high prevalence neglected tropical diseases. Vaccine (in press)

    Google Scholar 

  39. Bitran R, Martorell B, Escobar L, Munoz R, Glassman A (2009) Controlling and eliminating neglected diseases in Latin America and the Caribbean. Health Aff (Millwood) 28:1707–1719

    Article  Google Scholar 

  40. World Health Organization (2011) Leprosy update, 2011. World Epidemiol Rec 36:389–400

    Google Scholar 

  41. Hotez PJ, Bethony J, Bottazzi ME, Brooker S, Diemert D, Loukas A (2006) New technologies for the control of human hookworm infection. Trends Parasitol 22:327–331

    Article  Google Scholar 

  42. Reithinger R, Tarleton R, Urbina JA, Kitron U, Gurtler RE (2009) Eliminating Chagas disease: challenges and a roadmap. BMJ 338:b1283

    Article  Google Scholar 

  43. Hotez P (2011) A handful of ‘anti-poverty’ vaccines exist for neglected diseases, but the world’s poorest billion people need more. Health Aff 30:1080–1087

    Article  Google Scholar 

  44. Coller BA, Clements DE (2011) Dengue vaccines: progress and challenges. Curr Opin Immunol 23:391–398

    Article  CAS  Google Scholar 

  45. Hotez PJ, Bethony JM, Diemert DJ, Pearson M, Loukas A (2010) Developing vaccines to combat hookworminfection and intestinal schistosomiasis. Nat Rev Microbiol 8:814–826

    Article  CAS  Google Scholar 

  46. Lee BY, Bacon KM, Bailey R, Wiringa AE, Smith KJ (2011) The potential economic value of a hookworm vaccine. Vaccine 29:1201–1210

    Article  Google Scholar 

  47. Quijano-Hernandez I, Dumonteil E (2011) Advances and challenges towards a vaccine against Chagas disease. Hum Vaccin (in press)

    Google Scholar 

  48. Rassi Jr A, Rassi A, Marin-Neto JA (2010) Chagas disease. Lancet 375:1388–1402

    Article  Google Scholar 

  49. Perez-Molina JA, Perez-Ayala A, Moreno S, Fernandez-Gonzalez MC, Zamora J, Lopez-Velez R (2009) Use of benznidazole to treat chronic Chagas’ disease: a systematic review with a meta-analysis. J Antimicrob Chemother 64:1139–1147

    Article  CAS  Google Scholar 

  50. Sarli Issa V, Alcides Bocchi E (2010) Antitrypanosomal agents: treatment or threat? Lancet 376:768–769

    Article  Google Scholar 

  51. Marin-Neto JA, Rassi A Jr, Morillo CA et al on behalf of BENEFIT Investigators (2008). Rationale and design of a randomized placebo-controlled trial assessing the effects of etiologic treatment in Chagas cardiomyopathy: the BENznidazole Evaluation for Interrupting Trypanosomiasis (BENEFIT). Am Heart J 156:37–43

    Article  CAS  Google Scholar 

  52. Pinazo M-J, Munoz J, Posada E, Lopez-Chejade P, Gallego M, Ayala E, del Cacho E, Soy D, Gascon J (2010) Tolerance of benznidazole in treatment of Chagas’ disease in Adults. Antmicrob Agents Chemother 54:4896–4899

    Article  CAS  Google Scholar 

  53. Viotti R, Vigliano C, Lococo B, Alvarez MG, Petti M, Bertocchi G, Armenti A (2009) Side effects of benznidazole as treatment in chronic Chagas disease: fears and realities. Expert Rev AntiInfect Therap 7:157–163

    Article  CAS  Google Scholar 

  54. Castillo-Riqueime M, Guhl F, Turriago B, Pinto N, Rosas F, Florez Moartinez M, Fox-Rushby J, Davies C, Campbell-Lendrum D (2008) The costs of preventing and treating Chagas disease in Colombia. PLoS Negl Trop Dis 2(11):e336

    Article  Google Scholar 

  55. Dumonteil E, Escobedo-Ortegon J, Reyes-Rodriguez N, Arjona-Torres A, Ramirez-Sierra J (2004) Immunotherapy of Trypanosoma cruzi infection with DNA vaccines in mice. Infect Immun 72(1):46–53

    Article  CAS  Google Scholar 

  56. Zapata-Estrella H, Hummel-Newell C, Sanchez-Burgos G, Escobedo-Ortegon J, Ramirez-Sierra MJ, Arjona-Torres A, Dumonteil E (2006) Control of Trypanosoma cruzi infection and changes in T-cell populations induced by a therapeutic DNA vaccine in mice. Immunol Lett 103:186–191

    Article  CAS  Google Scholar 

  57. Sanchez-Burgos G, Mezquite-Vega RG, Escobedo-Ortegon J et al (2007) Comparative evaluation of therapeutic DNA vaccines against Trypanosoma cruzi in mice. FEMS Immunol Med Microbiol 50:333–341

    Article  CAS  Google Scholar 

  58. Limon-Flores AY, Cervera-Cetina R, Tzec-Arjona JL et al (2010) Effect of a combination DNA vaccine for the prevention and therapy of Trypanosoma cruzi infection in mice: role of CD4+ and CD8+ cells. Vaccine 28(46):7414–7419

    Article  CAS  Google Scholar 

  59. O’Hagan DT, De Gregorio E (2009) The path to a successful vaccine adjuvant—‘the long and winding road’. Drug Discov Today 14:541–551

    Article  Google Scholar 

  60. Oyewumi MO, Kumar A, Cui Z (2010) Nano-microparticles as immune adjuvants: correlating particle sizes adn the resultant immune responses. Expert Rev Vaccines 9:1095–1107

    Article  CAS  Google Scholar 

  61. Heffernan MJ, Kasturi SP, Yang SC, Pulendran B, Murthy N (2009) The stimulation of CD8+ T cells by dendritic cells pulsed with polyketal microparticles containing ion-paired protein antigen and poly(inosinic acid)-poly(cytidylic acid). Biomaterials 30:910–918

    Article  CAS  Google Scholar 

  62. Heffernan MJ, Zaharoff DA, Fallon JK, Schlom J, Greiner JW (2011) In vivo efficacy of a chitosan/IL-12 adjuvant system for protein-based vaccines. Biomaterials 32:926–932

    Article  CAS  Google Scholar 

  63. Roller CS, Reyes-Sandoval A, Cottingham MG, Ewer K, Hill AVS (2011) Viral vectors as vaccine platform: deployment in sight. Curr Opin Immunol 23:377–382

    Article  Google Scholar 

  64. Cavenaugh JS, Awi D, Mendy M, Hill AVS, Whittle H, McConkey S (2011) Partially randomized, non-blinded trial of DNA and MVA therapeutic vaccines based on hepatitis B virus surface protein for chronic HBV infection. PLoS One 6:e14626

    Article  CAS  Google Scholar 

  65. Hill AVS, Reyes-Sandoval A, O’Hara G, Ewer K, Lawrie Al, Goodman A, Nicosia A, Folgori A, Colloca S, Coretese R, Gilbert SC, Draper SJ (2010) Prime-boost vectored malaria vaccines. Hum Vaccin 6:78–83

    Article  CAS  Google Scholar 

  66. Lee BY, Bacon KM, Connor DL, Willig AM, Bailey RR (2010) The potential economic value of a Trypanosoma cruzi (Chagas disease) vaccine in Latin America. PLoS Negl Trop Dis 4(12):e916

    Article  Google Scholar 

Download references

Acknowledgements

The development of the human hookworm vaccine is supported by grants to the Sabin Vaccine Institute from the Bill & Melinda Gates Foundation, the Dutch Ministry of Foreign Affairs, and the Brazilian Ministry of Health. The feasibility studies for the development of the Chagas disease vaccine is supported by funds from the Carlos Slim Health Institute (Instituto Carlos Slim de la Salud) and the SouthWest Electronic Energy Medical Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Hotez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hotez, P., Dumonteil, E., Heffernan, M., Bottazzi, M. (2013). Innovation for the ‘Bottom 100 Million’: Eliminating Neglected Tropical Diseases in the Americas. In: Curtis, N., Finn, A., Pollard, A. (eds) Hot Topics in Infection and Immunity in Children IX. Advances in Experimental Medicine and Biology, vol 764. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4726-9_1

Download citation

Publish with us

Policies and ethics