Skip to main content

Part of the book series: SpringerBriefs in Systems Biology ((BRIEFSBIOSYS,volume 2))

  • 848 Accesses

Abstract

Cellular systems are organized as a complex web of interactions among numerous macromolecules. Among the others, proteins are important since they play important role in virtually every biological process that occurs in the cell. Cellular systems are constantly challenged by fluctuations in the surrounding environment. In response, repertoire of the protein contents in the cell constantly alters, accordingly the interactions among them. Mathematically, these protein–protein interactions (PPIs) can be conceptualized in the form of graph or network for ease in analysis. A node in the graph represents protein and its link with other node is represented by edge. The local and global topological properties of the network reveal organization principles of underlying interactions among total proteins of an organism. The local properties specify importance of a particular protein in the network whereas global properties reflect their organization operational in the cell. Over the years, several graph theoretic and clustering techniques proposed for analysis of complex physical world have been applied to understand dynamic organization of the cellular networks. These methods promise to become more informative as the high quality PPI networks increase by orders of magnitude. This chapter provides an overview on various topological properties of networks and their significance in understanding biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  PubMed  Google Scholar 

  2. Jeong, H., et al.: The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)

    Article  PubMed  CAS  Google Scholar 

  3. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  PubMed  CAS  Google Scholar 

  4. Faith, J.J., et al.: Many microbe microarrays database: uniformly normalized Affymetrix compendia with structured experimental metadata. Nucl. Acids Res. 36(Database issue), D866–D870 (2008)

    Google Scholar 

  5. Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5(2), 101–113 (2004)

    Article  PubMed  CAS  Google Scholar 

  6. Jeong, H., et al.: Lethality and centrality in protein networks. Nature 411(6833), 41–42 (2001)

    Article  PubMed  CAS  Google Scholar 

  7. Grigoriev, A.: On the number of protein–protein interactions in the yeast proteome. Nucl. Acids Res. 31(14), 4157–4161 (2003)

    Article  PubMed  CAS  Google Scholar 

  8. Marcotte, E.M., et al.: Detecting protein function and protein–protein interactions from genome sequences. Science 285(5428), 751–753 (1999)

    Article  PubMed  CAS  Google Scholar 

  9. Kim, P.M., et al.: The role of disorder in interaction networks: a structural analysis. Mol. Syst. Biol. 4, 179 (2008)

    Article  PubMed  Google Scholar 

  10. Borneman, A.R., et al.: Target hub proteins serve as master regulators of development in yeast. Genes Dev. 20(4), 435–448 (2006)

    Article  PubMed  CAS  Google Scholar 

  11. Yu, H., et al.: Genomic analysis of essentiality within protein networks. Trends Genet. 20(6), 227–231 (2004)

    Article  PubMed  CAS  Google Scholar 

  12. Yu, H., et al.: The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput. Biol. 3(4), e59 (2007)

    Article  PubMed  Google Scholar 

  13. Butland, G., et al.: Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433(7025), 531–537 (2005)

    Article  PubMed  CAS  Google Scholar 

  14. Hu, P.: Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. PLoS Biol. 7(4), e96 (2009)

    Article  PubMed  Google Scholar 

  15. Butland, G.: eSGA: E. coli synthetic genetic array analysis. Nat. Methods 5(9), 789–795 (2008)

    Article  PubMed  CAS  Google Scholar 

  16. Cohen, R., Havlin, S.: Scale-free networks are ultrasmall. Phys. Rev. Lett. 90(5), 058701 (2003)

    Article  PubMed  Google Scholar 

  17. Chung, F., Lu, L.: The average distances in random graphs with given expected degrees. Proc. Natl. Acad. Sci. USA 99(25), 15879–15882 (2002)

    Article  PubMed  CAS  Google Scholar 

  18. Tanaka, R., Yi, T.M., Doyle, J.: Some protein interaction data do not exhibit power law statistics. FEBS Lett. 579(23), 5140–5144 (2005)

    Article  PubMed  CAS  Google Scholar 

  19. Ivanic, J., Wallqvist, A., Reifman, J.: Probing the extent of randomness in protein interaction networks. PLoS Comput. Biol. 4(7), e1000114 (2008)

    Article  PubMed  Google Scholar 

  20. Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science 296(5569), 910–913 (2002)

    Article  PubMed  CAS  Google Scholar 

  21. Hakes, L., et al.: Protein–protein interaction networks and biology—what’s the connection? Nat. Biotechnol. 26(1), 69–72 (2008)

    Article  PubMed  CAS  Google Scholar 

  22. Hao, D., Li, C.: The dichotomy in degree correlation of biological networks. PLoS One 6(12), e28322 (2011)

    Google Scholar 

  23. Zhang, Z., Zhang, J.: A big world inside small-world networks. PLoS One 4(5), e5686 (2009)

    Article  PubMed  Google Scholar 

  24. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87(19), 198701 (2001)

    Article  PubMed  CAS  Google Scholar 

  25. Wagner, A., Fell, D.A.: The small world inside large metabolic networks. Proc. Biol. Sci. 268(1478), 1803–1810 (2001)

    Article  PubMed  CAS  Google Scholar 

  26. Ravasz, E., et al.: Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)

    Article  PubMed  CAS  Google Scholar 

  27. Brohee, S., van Helden, J.: Evaluation of clustering algorithms for protein–protein interaction networks. BMC Bioinform. 7, 488 (2006)

    Article  Google Scholar 

  28. Rhrissorrakrai, K., Gunsalus, K.C.: MINE—module identification in networks. BMC Bioinform. 12, 192 (2011)

    Google Scholar 

  29. Shannon, P., et al.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)

    Article  PubMed  CAS  Google Scholar 

  30. Hu, Z., et al.: VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucl. Acids Res. 37(Web Server issue), W115–W121 (2009)

    Google Scholar 

  31. Brown, K.R., et al.: NAViGaTOR: network analysis, visualization and graphing Toronto. Bioinformatics 25(24), 3327–3329 (2009)

    Article  PubMed  CAS  Google Scholar 

  32. Krzywinski, M., et al.: Hive plots—rational approach to visualizing networks. Brief Bioinform. br069v1–bbr069 (2011)

    Google Scholar 

  33. Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity in networks. Nature 466(7307), 761–764 (2010)

    Google Scholar 

  34. Kalinka, A.T., Tomancak, P.: Linkcomm: an R package for the generation, visualization, and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27(14), 2011–2012 (2011)

    Google Scholar 

  35. Brohee, S., et al.: Network analysis tools: from biological networks to clusters and pathways. Nat. Protoc. 3(10), 1616–1629 (2008)

    Article  PubMed  CAS  Google Scholar 

  36. von Mering, C., et al.: Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417(6887), 399–403 (2002)

    Article  Google Scholar 

  37. Raman, K.: Construction and analysis of protein–protein interaction networks. Autom. Exp. 2(1), 2 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijaykumar Yogesh Muley .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Vijaykumar Yogesh Muley

About this chapter

Cite this chapter

Muley, V.Y., Acharya, V. (2013). Analyses of Complex Genome-Scale Biological Networks. In: Genome-Wide Prediction and Analysis of Protein-Protein Functional Linkages in Bacteria. SpringerBriefs in Systems Biology, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4705-4_5

Download citation

Publish with us

Policies and ethics