Skip to main content

Dormancy and the Control of Germination

  • Chapter
  • First Online:
Seeds

Abstract

Dormancy is the temporary failure of a seed to complete germination under favorable conditions. It allows for the dispersal of seeds in space and time. There are several types of dormancy, which include physical, mechanical, or chemical inhibition by the covering layers of the embryo, the inability to germinate because of an undifferentiated or immature embryo, and the repression of germination by metabolic restraints. The breaking of dormancy is governed by environmental cues, including temperature, light, nitrate, and some smoke components. This allows seedling establishment during suitable conditions to maximize survival. The breaking of physiological dormancy and the induction of germination are regulated via hormone signaling pathways and mainly through the GA- (gibberellin) and ABA-(abscisic acid) biosynthetic and catabolic pathways. The ABA–GA balance appears to be a central regulatory feature that integrates multiple interactions among environmental cues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Useful Literature References

Section 6.1

  • Baskin CC, Baskin JM (1998) Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic, New York (Compendium of dormancy types and ecological relationships)

    Google Scholar 

Section 6.2

  • Baskin CC, Baskin JM (2004) Seed Sci Res 14:1–16 (Dormancy classification)

    Google Scholar 

  • Hilhorst HWM (2007) In: Bradford KJ, Nonogaki H (eds) Seed development, dormancy and germination. Blackwell Publishing, Oxford, pp 50–71 (Definitions and hypotheses of dormancy)

    Google Scholar 

  • Werker E (1997) Seed anatomy. Schweizerbart Scientific Productions, Stuttgart (Superior coverage of seed anatomy)

    Google Scholar 

Section 6.3

  • Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B, Grappin P, Jullien M (2004) Planta 219:479–488 (ABA contents in relation with dormancy)

    Google Scholar 

  • Cafasso D, Widmer A, Cozzolino S (2005) J Hered 96:66–70 (Genetics of dormancy)

    Google Scholar 

  • Debeaujon I, Koornneef M (2000) Plant Physiol 122:415–424 (Seed coat pigmentation of Arabidopsis and dormancy)

    Google Scholar 

  • Frey A, Audran C, Marin E, Sotta B, Marion-Poll A (1999) Plant Mol Biol 39:1267–1274 (Genetic modification of ABA content)

    Google Scholar 

  • Hamly DH (1932) Bot Gaz 93:345–375 (Seed coat structure)

    Google Scholar 

  • Homrichhausen TM, Hewitt JR, Nonogaki H (2003) Seed Sci Res 13:219–227 (Carrot seeds shed with immature embryos)

    Google Scholar 

  • Le Page-Degivry M-T, Garello G (1992) Plant Physiol 98:1386–1390 (ABA and embryo dormancy)

    Google Scholar 

  • Lenoir C, Corbineau F, Côme D (1986) Physiol Plant 68:301–307 (Oxygen uptake by enclosing tissues of barley grains)

    Google Scholar 

  • McKee GW, Pfeiffer RA, Mohsenin NN (1977) Agron J 69:53–58 (Seed coat impermeability to water)

    Google Scholar 

  • Thevenot C, Côme D (1973) CR Acad Sci Ser D 277:1873–1876 (Cotyledon and embryo dormancy)

    Google Scholar 

Section 6.4

  • Argyris J, Dahal P, Hayashi E, Still DW, Bradford KJ (2008) Plant Physiol 148:926–947 (Thermodormancy and ABA)

    Google Scholar 

  • Bentsink L, Jowett J, Hanhart CJ, Koornneef M (2006) Proc Natl Acad Sci USA 103:17042–17047 (Cloning of the DOG1gene)

    Google Scholar 

  • Derkx MPM, Smidt WJ, Van der Plas LHW, Karssen CM (1993) Physiol Plant 9:707–718 (Respiration and changes in Sisymbriumdormancy)

    Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Ann Rev Plant Biol 59:387–415 (Review of molecular aspects of dormancy)

    Google Scholar 

  • Footitt S, Cohn MA (1995) Plant Physiol 107:1365–1370 (Fructose 2,6-bisphosphatase and red rice dormancy)

    Google Scholar 

  • Gubler F, Millar AA, Jacobsen JV (2005) Curr Opin Plant Biol 8:183–187 (Review of vivipary and pre-harvest sprouting)

    Google Scholar 

  • Karssen CM, Brinkhorst-van der Swan DLC, Breekland AE, Koornneef M (1983) Planta 157:158–165 (ABA-mutants and Arabidopsis dormancy)

    Google Scholar 

  • Okamoto M, Kuwahara A, et al (2006) Plant Physiol 141:97–107 (ABA in Arabidopsis seed)

    Google Scholar 

  • Spoelstra P, Joosen RVL, Hilhorst HWM (2002) Seed Sci Res 12:231–238 (ATP localization in dormant and non-dormant tomato seeds)

    Google Scholar 

Section 6.5

  • Hayes RG, Klein WH (1974) Plant Cell Physiol 15:643–663 (Spectral quality of light and onset of dormancy)

    Google Scholar 

  • Hilhorst HWM, Karssen CM (2000) In: Fenner M (ed) Seeds. The ecology of regeneration in plant communities, 2nd ed. CAB International, Wallingford, pp 293–310 (Influence of chemical environment on germination)

    Google Scholar 

  • Karssen CM (1970) Acta Bot Neerl 19:81–94 (Photoperiodic induction of dormancy in Chenopodium)

    Google Scholar 

  • Kendall SL, Hellwege A, Marriot P, Whalley C, Graham IA, Penfield S (2011) Plant Cell 23:2568–2580 (Effect of temperature during seed maturation on dormancy)

    Google Scholar 

Section 6.6

  • Bazin J, Langlade N, Vincourt P, Arribat S, Balzergue S, El-Maarouf-Bouteau H, Bailly C (2011) Plant Cell 23:2196–2208 (Targeted oxidation of mRNA during after-ripening)

    Google Scholar 

  • Beligni MV, Lamattina L (2000) Planta 210:215–221 (Effect of NO on lettuce germination)

    Google Scholar 

  • Bethke PC, Libourel IGL, Aoyama N, ChungY-Y, Still DW, Jones RL (2007) Plant Physiol 143:1173–1188 (Effect of NO on Arabidopsis dormancy)

    Google Scholar 

  • Borthwick HA, Hendricks SB, Toole EH, Toole VK (1954) Bot Gaz 115:205–225 (Action spectrum for breaking of dormancy in lettuce)

    Google Scholar 

  • Bradford KJ (2005) New Phytol 165:338–341 (Threshold models applied to phytochrome action)

    Google Scholar 

  • Chien C-T, Kuo-Hang L-L, Lin T-P (1998) Ann Bot 81:41–47 (Content and sensitivity to ABA during cold stratification)

    Google Scholar 

  • Da Silva EAA, de Melo DLB, Davide AC, de Bode N, Abreu GB, Faria JMR, Hilhorst HWM (2007) Ann Bot 99:823–830 (Breaking of morpho-physiological dormancy)

    Google Scholar 

  • Finch-Savage WE, Cadman CSC, Toorop PE, Lynn JR, Hilhorst HWM (2007) Plant J 51:60–78 (Transcriptomics of dormancy breaking in Arabidopsis)

    Google Scholar 

  • Flematti GR, Merritt DJ, Piggott MJ, Trengrove RD, Smith SM, Dixon KW, Ghisalberti EL (2011) Nat Commun 2:Article 360 (Cyanohydrins in smoke)

    Google Scholar 

  • Grappin P, Bouinot D, Sotta B, Miginiac E, Julien M (2000) Planta 210:279–285 (After-ripening of tobacco seeds)

    Google Scholar 

  • Hennig L, Stoddart WM, Dieterle M, Whitelam GC, Schäfer E (2002) Plant Physiol 128:194–200 (Different forms of phytochrome)

    Google Scholar 

  • Iglesias-Fernández R, Matilla A (2009) J Exp Bot 60:1645–1661 (After-ripening and sensitivity to GAs)

    Google Scholar 

  • Martin RC, Pluskota WE, Nonogaki H (2010) In: Pua EC, Davey MR (eds) Plant developmental biology: biotechnological perspectives. Springer, Heidelberg, 383–404 (Interaction of ABA and GA metabolism)

    Google Scholar 

  • Matakiadis T, Alboresi A, Jikumaru J, Tatematsu K, Pichon O, Renou J-P, Kamiya Y, Nambara E, Truong H-N (2009) Plant Physiol 149:949–960 (Nitrate signaling in dormancy relief)

    Google Scholar 

  • Matilla AJ, Matilla-Vázquez MA (2008) Plant Sci 175:87–97 (Involvement of ethylene in seed physiology)

    Google Scholar 

  • Nelson DC, Riseborough J, Flematti GR, Stevens J, Ghisalberti EL, Dixon KW, Smith SM (2009) Plant Physiol 149:863–873 (Active smoke components that break dormancy)

    Google Scholar 

  • Oh E, Yamaguchi S, Hu J, Yusuke J, Jung B, Paik I, Lee H-S, Sun T, Kamiya Y, Choia G (2007) Plant Cell 19:1192–1208 (Phytochrome downstream signalling)

    Google Scholar 

  • Park S-Y, Fung P, Nishimura N, et al (2009) Science 324:1068–1071 (ABA perception and signal transduction)

    Google Scholar 

  • Reyes D, Rodriguez D, Gonzalez-Garcia MP, Lorenzo O, Nicolas G, Garcia-Martinez JL, Nicolas C (2006) Plant Physiol 141:1414–1424 (Role of PP2C in ABA and GA signaling)

    Google Scholar 

  • Seo M, Nambara E, Choi G, Yamaguchi S (2009) Plant Mol Biol 69:463–472 (GA perception and signal transduction)

    Google Scholar 

  • Stepanova AN, Alonso JM (2009) Curr Opin Plant Biol 12:548–555 (Ethylene signaling and response)

    Google Scholar 

  • Totterdell S, Roberts EH (1979) Plant Cell Environ 2:131–137 (Chilling of Rumex)

    Google Scholar 

  • Totterdell S, Roberts EH (1980) Plant Cell Environ 3:3–12 (Alternating temperatures and germination)

    Google Scholar 

  • Visser T (1956) Proc K Ned Akad Wet C 59:314–324 (Chilling and apple seed dormancy)

    Google Scholar 

  • Yamaguchi S, Kamiya Y, Nambara E (2007) In: Bradford KJ, Nonogaki H (eds) Seed development, dormancy and germination. Blackwell Publishing, Oxford, 224–247 (ABA and GA metabolism pathways)

    Google Scholar 

  • Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S (2004) Plant Cell 16:367–378 (Gene expression in the cold)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bewley, J.D., Bradford, K.J., Hilhorst, H.W.M., Nonogaki, H. (2013). Dormancy and the Control of Germination. In: Seeds. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4693-4_6

Download citation

Publish with us

Policies and ethics