Skip to main content

IRES-Dependent, Cap-Independent Translation in Multiple Myeloma

  • Chapter
  • First Online:
Genetic and Molecular Epidemiology of Multiple Myeloma

Abstract

Due to their significant production of immunoglobulin, malignant myeloma plasma cell clones must maintain viability and continually expand while laboring under heightened endoplasmic reticulum (ER) stress. One potential mechanism to accomplish these goals is the use of cap-independent translation mediated by internal ribosomal entry sequences (IRESs). These sequences, found in only a select number of transcripts, facilitate translation that is independent of RNA cap-binding to initiation factors. Thus, the myeloma cell could globally restrain protein translation (e.g., by over-expressed DEPTOR-inhibiting mTOR function) yet allow selected protein translation through IRES activity. This review highlights previous work that supports this hypothesis, namely, that (1) IRESs exist in important transcripts implicated in myeloma progression (i.e., D-cyclin, c-myc, VEGF); (2) there is a myeloma-specific c-myc point mutation that markedly enhances IRES-dependent translation; and (3) IRES function is important in myeloma cell responses, at least when challenged with mTOR inhibitors or stimulated with IL-6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Fageeh M, Smales C (2009) Cold-inducible RNA binding protein (CIRP) expression is modulated by alternative mRNAs. RNA 15:1165–1176

    Article  Google Scholar 

  • Bert A, Grepin R, Vadas M et al (2006) Assessing IRES activity in the HIF-1alpha and other cellular 5′ UTRs. RNA 12:1074–1083

    Article  PubMed  CAS  Google Scholar 

  • Bonnal S, Schaeffer C, Creancier L et al (2003) A single internal ribosome entry site containing a G quartet RNA structure drives fibroblast growth factor 2 gene expression at four alternative translation initiation codons. J Biol Chem 278:39330–39336

    Article  PubMed  CAS  Google Scholar 

  • Bruhat A, Cherasse Y, Chaveroux C (2009) Amino acids as regulators of gene expression in mammals: molecular mechanisms. Biofactors 35:249–257

    Article  PubMed  CAS  Google Scholar 

  • Buxade M, Parra J, Rousseau S et al (2005) The MNKs are novel components in the control of TNF alpha biosynthesis and phosphorylate and regulate hnRNP A1. Immunity 23:177–189

    Article  PubMed  CAS  Google Scholar 

  • Chappell S, Le Quesne J, Paulin F et al (2000) A mutation in the c-myc IRES leads to enhanced internal ribosomal entry in multiple myeloma: a novel mechanism of oncogene deregulation. Oncogene 19:4437–4440

    Article  PubMed  CAS  Google Scholar 

  • Cobbold L, Wilson L, Sawicka K et al (2010) Upregulated c-myc expression in multiple myeloma by internal ribosome entry results from increased interactions with and expression of PTB-1 and YB-1. Oncogene 29:2884–2891

    Article  PubMed  CAS  Google Scholar 

  • Coldwell M, Mitchell S, Stoneley M et al (2000) Initiation of Apaf-1 translation by internal ribosome entry. Oncogene 19:899–905

    Article  PubMed  CAS  Google Scholar 

  • Cornelis S, Bruynooghe Y, Denecker G et al (2000) Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Mol Cell 5:597–605

    Article  PubMed  CAS  Google Scholar 

  • Evans J, Mitchell S, Spriggs K et al (2003) Members of the poly (rC) binding protein family stimulate the activity of the c-myc IRES in vitro and in vivo. Oncogene 22:8012–8020

    Article  PubMed  Google Scholar 

  • Fernandez J, Yaman I, Sarnow P et al (2002) Regulation of internal ribosomal entry site-mediated translation by phosphorylation of the translation initiation factor eIF2a. J Biol Chem 277:19198–19205

    Article  PubMed  CAS  Google Scholar 

  • Fernandez J, Yamen I, Huang C (2005) Ribosome stalling regulates IRES-mediated translation in eukaryotes: a parallel to prokaryotic attenuation. Mol Cell 17:405–416

    Article  PubMed  CAS  Google Scholar 

  • Frost P, Shi Y, Hoang B et al (2007) AKT activity regulates the ability of mTOR inhibitors to prevent angiogenesis and VEGF expression in multiple myeloma cells. Oncogene 26:2255–2262

    Article  PubMed  CAS  Google Scholar 

  • Frost P, Shi Y, Hoang B et al (2009) Regulation of D-cyclin translational inhibition in myeloma cells treated with mTOR inhibitors: rationale for combined treatment with ERK inhibitors and rapamycin. Mol Cancer Ther 8:83–90

    Article  PubMed  CAS  Google Scholar 

  • Fox J, Shin W, Caudill M (2009) A UV-responsive internal ribosome entry site enhances serine hydroxymethyltransferase 1 expression for DNA damage repair. J Biol Chem 284:31097–31108

    Article  PubMed  CAS  Google Scholar 

  • Gaccioli F, Huang C, Wang C et al (2006) Amino acid starvation induces the SNAT2 neutral amino acid transporter by a mechanism that involves eukaryotic initiation factor 2alpha phosphorylation and cap-independent translation. J Biol Chem 281:17929–17940

    Article  PubMed  Google Scholar 

  • Gera J, Mellinghoff I, Shi Y et al (2004) AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J Biol Chem 279:2737–2746

    Article  PubMed  CAS  Google Scholar 

  • Gingras A, Gygi S, Raught B et al (1999) Regulation of 4E-BP1 phosphorylation: a novel two step mechanism. Genes Dev 13:1422–1437

    Article  PubMed  CAS  Google Scholar 

  • Graber T, Holcik M (2007) Cap-independent regulation of gene expression in apoptosis. Mol Biosyst 3:825–834

    Article  PubMed  CAS  Google Scholar 

  • Graber T, Baird S, Kao P et al (2010) NF45 functions as an IRES transacting factor that is required for translation of cIAP1 during the unfolded protein response. Cell Death Diff 17:719–729

    Article  CAS  Google Scholar 

  • Hanson J, Zhang H, Hemida M et al (2012) IRES-dependent translational control during virus-induced endoplasmic reticulum stress and apoptosis. Front Microbiol 3:1–14

    Google Scholar 

  • Harding H, Zhang Y, Zeng Y et al (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633

    Article  PubMed  CAS  Google Scholar 

  • Hatzglou M, Fernandez J, Yaman I et al (2004) Regulation of the cationic amino acid transport: the story of the CAT-1 transporter. Annu Rev Nutr 24:377–399

    Article  Google Scholar 

  • Henis-Korenblit S, Strumpf N, Goldstaub D et al (2000) A novel form of DAP5 protein accumulates in apoptotic cells as a result of caspase cleavage and internal ribosome entry site-mediated translation. Mol Cell Biol 20:496–506

    Article  PubMed  CAS  Google Scholar 

  • Henis-Korenblit S, Shani G, Sines T et al (2002) The caspase cleaved DAP5 protein supports internal ribosome entry-mediated translation of death proteins. Proc Natl Acad Sci 99:5400–5405

    Article  PubMed  CAS  Google Scholar 

  • Hietakangas V, Cohen S (2009) Regulation of tissue growth through nutrient sensing. Annu Rev Genet 43:389–410

    Article  PubMed  CAS  Google Scholar 

  • Hinnebusch AG (2000) Mechanism and regulation of initiator methionyl-tRNA binding to ribosomes. In: Sonenberg N, Hershey JWB, Mathews MB (eds) Translational control of gene expression. CSHL Press, Cold Spring Harbor

    Google Scholar 

  • Hoang B, Frost P, Shi Y et al (2010) Targeting TORC2 in multiple myeloma with a novel mTOR kinase inhibitor. Blood 116:4560–4570

    Article  PubMed  CAS  Google Scholar 

  • Holcik M, Korneluk R (2000) Functional characterization of the X-linked inhibitor of apoptosis (XIAP) internal ribosome entry site element: Role of La autoantigen in XIAP translation. Mol Cell Biol 20:4648–4657

    Article  PubMed  CAS  Google Scholar 

  • Holcik M, Sonenberg N (2005) Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6:318–327

    Article  PubMed  CAS  Google Scholar 

  • Hsieh A, Liu Y, Edlind M et al (2012) The translational landscape of mTOR signaling steers cancer initiation and metastasis. Nature 485:55–64

    Article  PubMed  CAS  Google Scholar 

  • Iervolino A, Santilli G, Trotta R et al (2002) hnRNP A1 nucleocytoplasmic shuttling activity is required for normal myelopoiesis and BCR-ABL leukemogenesis. Mol Cell Biol 22:2255–2266

    Article  PubMed  CAS  Google Scholar 

  • Jaag H, Kawchuk L, Rohde W et al (2003) An unusual internal ribosome entry site of inverted symmetry directs expression of a potato leafroll polerovirus replication-associated protein. Proc Natl Acad Sci 100:8939–8944

    Article  PubMed  CAS  Google Scholar 

  • Jang S, Wimmer E (1990) Cap-independent translation of encephalomyocarditis virus RNA: Structural elements of the internal ribosome entry site and involvement of a cellular 57-kD RNA binding protein. Genes Dev 9:1560–1572

    Article  Google Scholar 

  • Jo O, Martin J, Bernath A et al (2008) Heterogeneous nuclear ribonucleoprotein A1 regulates cyclin D1 and c-myc internal ribosome entry site function through Akt signaling. J Biol Chem 283:23274–23287

    Article  PubMed  CAS  Google Scholar 

  • Johannes G, Carter M, Eisen M (1999) Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proc NAtl Acad Aci 96:13118–13123

    Article  CAS  Google Scholar 

  • Juin P, Hueber A, Littlewood T et al (1999) c-myc-induced sensitization to apoptosis is mediated through cytochrome-C release. Genes Dev 13:1367–1381

    Article  PubMed  CAS  Google Scholar 

  • Kneller E, Conner J, Lyles D (2009) hnRNPs relocalize to the cytoplasm following infection with Vesicular Stomatitis Virus. J Virol 83:770–780

    Article  CAS  Google Scholar 

  • Komar A, Hatzoglou M (2011) Cellular IRES-mediated translation: the war of ITAFs in pathological states. Cell Cycle 10:229–240

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1989) The scanning model for translation: An update. J Cell Biol 108:229–241

    Article  PubMed  CAS  Google Scholar 

  • Le Quesne J, Stoneley M, Fraser G et al (2001) Derivation of a structural model for the c-myc IRES. J Mol Biol 310:111–126

    Article  PubMed  Google Scholar 

  • Liu C, Schröder M, Kaufman R (2000) Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J Biol Chem 275:24881–24885

    Article  PubMed  CAS  Google Scholar 

  • Locker N, Chamond N, Sargueil B (2011) A conserved structure within the HIV gag open reading frame that controls translation initiation directly recruits the 40S subunit and eIF3. Nucleic Acids Res 39:2367–2377

    Article  PubMed  CAS  Google Scholar 

  • Macejak D, Sarnow P (1991) Internal initiation of translation mediated by the 5′ leader of a cellular mRNA. Nature 353:90–94

    Article  PubMed  CAS  Google Scholar 

  • Marash L, Liberman N, Henis-Korenblit S (2008) DAP5 promotes cap-independent translation of Bcl-2 and CDK1 to facilitate cell survival during mitosis. Mol Cell 30:447–459

    Article  PubMed  CAS  Google Scholar 

  • Marr M, D’Alessio J, Puig O et al (2007) IRES-mediated functional coupling of transcription and translation amplifies insulin receptor feedback. Genes Dev 21:175–183

    Article  PubMed  CAS  Google Scholar 

  • Martin J, Masri J, Cloninger C et al (2011) Phosphomimetic substitution of heterogeneous nuclear ribonucleoprotein A1 at serine 199 abolishes AKT-dependent internal ribosome entry site-transacting factor (ITAF) function via effects on strand annealing and results in mammalian target of rapamycin complex 1 (mTORC1) inhibitor sensitivity. J Biol Chem 286:16402–16413

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Salas E, Pineiro D, Fernandez N (2012) Alternative mechanisms to initiate translation in eukaryotic mRNAs. Comparative Funct Genomics 2012:1–12

    Article  Google Scholar 

  • Mitchell S, Spriggs K, Coldwell R et al (2003) The Apaf-1 internal ribosome entry segment attains the correct structural conformation for function via interactions with PTB and UNR. Molecular Cell 11:757–771

    Article  PubMed  CAS  Google Scholar 

  • Morris M, Negishi Y, Pazsint C et al (2010) An RNA G-quadruplex is essential for cap-independent translation in human VEGF IRES. J Amer Chem Soc 132:17831–17839

    Article  CAS  Google Scholar 

  • Notari M, Neviani P, Santhanam R et al (2006) A MAPK/hnRNPK pathway controls BCR/ABL oncogenic potential by regulating myc mRNA translation. Blood 107:2507–2516

    Article  PubMed  CAS  Google Scholar 

  • Pardo O, Lesay A, Arcaro A et al (2003) Fibroblast growth factor 2-mediated translational control of IAPs blocks mitochondrial release of Smac/DIABLO and apoptosis in small cell lung cancer cells. Mol Cell Biol 23:7600–7610

    Article  PubMed  CAS  Google Scholar 

  • Parkin N, Darveau R, Nicholson R et al (1988) cis-acting translational effects of the 5′ noncoding region of c-myc mRNA. Mol Cell Biol 8:2875–2883

    PubMed  CAS  Google Scholar 

  • Paulin F, Chappell S, Willis A (1998) A single nucleotide change in the c-myc IRES leads to enhanced binding of a group of protein factors. Nucleic Acids Res 26:3097–3103

    Article  PubMed  CAS  Google Scholar 

  • Paulin F, West M, Sullivan N et al (1996) Aberrant translational control of the c-myc gene in multiple myeloma. Oncogene 13:505–513

    PubMed  CAS  Google Scholar 

  • Pelleteir J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320–325

    Article  Google Scholar 

  • Pickering B, Mitchell S, Spriggs A et al (2004) Bag-1 internal ribosome entry segment activity is promoted by structural changes mediated by poly(rC) binding protein 1 and recruitment of polypyrimidine tract binding protein 1. Mol Cell Biol 24:5595–5605

    Article  PubMed  CAS  Google Scholar 

  • Riley A, Jordan L, Holcik M (2010) Distinct 5′ UTRs regulate XIAP expression under normal growth conditions and during cellular stress. Nucleic Acids Res 38:4656–4674

    Article  Google Scholar 

  • Sachs A, Varani G (2000) Eukaryotic translation initiation: There are two sides to every story. Nat Struct Biol 7:356–361

    Article  PubMed  CAS  Google Scholar 

  • Schepens B, Tinton S, Bruynooghe Y et al (2005) The polypyrimidine tract-binding protein stimulates HIF-1a IRES-mediated translation during hypoxia. Nucleic Acids Res 33:6884–6894

    Article  PubMed  CAS  Google Scholar 

  • Schepens B, Tinton S, Bruynooghe Y et al (2007) A role for hnRNP C1/C2 and UNR in internal initiation of translation during mitosis. EMBO J 10:158–169

    Article  Google Scholar 

  • Schröder M, Kaufman R (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  PubMed  Google Scholar 

  • Sherrill K, Byrd M, Van Eden M et al (2004) BCL-2 translation is mediated via internal ribosome entry during cell stress. J Biol Chem 279:29066–29074

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Sharma A, Wu H et al (2005) Cyclin D1 and c-myc internal ribosome entry site (IRES)-dependent translation is regulated by AKT activity and enhanced by rapamycin through a p38 MAPK- and ERK-dependent pathway. J Biol Chem 280:10964–10973

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Frost P, Hoang B et al (2008) IL-6-induced stimulation of myc translation in myeloma cells is mediated by myc IRES function and the RNA-binding protein hnRNP A1. Cancer Res 68:10215–10222

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Frost P, Hoang B et al (2011) IL-6 enhancement of myc translation in myeloma cells: Critical role of cytoplasmic localization of the RNA-binding protein hnRNP A1. J Biol Chem 286:67–78

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Frost P, Hoang B et al (2012) MNK kinases facilitate c-myc IRES activity in rapamycin-treated multiple myeloma cells. Oncogene [In press]

    Google Scholar 

  • Sonenberg N, Hinnebusch A (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–745

    Article  PubMed  CAS  Google Scholar 

  • Spriggs K, Bushell M, Mitchell S et al (2005) Internal ribosome entry segment-mediated translation during apoptosis: the role of IRES-trans-acting factors. Cell Death Differ 12:585–591

    Article  PubMed  CAS  Google Scholar 

  • Spriggs K, Stoneley M, Bushell M et al (2008) Re-programming of translation following cell stress allows IRES-mediated translation to predominate. Biol Cell 100:27–38

    Article  PubMed  CAS  Google Scholar 

  • Spriggs K, Cobbold L, Ridley S (2009) The human insulin receptor mRNA contains a functional internal ribosome entry segment. Nucleic Acids Res 37:5881–5893

    Article  PubMed  CAS  Google Scholar 

  • Spriggs K, Bushell M, Willis A (2010) Translation regulation of gene expression during conditions of cell stress. Mol Cell 40:228–237

    Article  PubMed  CAS  Google Scholar 

  • Stoneley M, Paulin F, Le Quesne J et al (1998) C-myc 5′UTR contains an internal ribosome entry segment. Oncogene 16:423–430

    Article  PubMed  CAS  Google Scholar 

  • Stoneley M, Chappell S, Jopling C et al (2000) c-Myc protein synthesis is initiated from the internal ribosome entry segment during apoptosis. Mol Cell Biol 20:1162–1169

    Article  PubMed  CAS  Google Scholar 

  • Subkhankulova T, Mitchell S, Willis A (2001) Internal ribosome entry segment-mediated initiation of c-Myc protein synthesis following genotoxic stress. Biochem J 359:183–192

    Article  PubMed  CAS  Google Scholar 

  • Tee A, Proud C (2002) Caspase cleavage of initiation factor 4E-binding protein 1 yields a dominant inhibitor of cap-dependent translation and reveals a novel regulatory motif. Mol Cell Biol 22:1674–1683

    Article  PubMed  CAS  Google Scholar 

  • Thoreen C, Chantranupong L, Keys H et al (2012) A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485:109–116

    Article  PubMed  CAS  Google Scholar 

  • Van Eden M, Byrd M, Sherrill K et al (2004) Translation of cellular inhibitor of apoptosis protein 1 (c-IAP) mRNA is IRES mediated and regulated during cell stress. RNA 10:469–481

    Article  PubMed  Google Scholar 

  • Warnakulasuriyarachchi D, Cerquozzi S, Cheung H et al (2004) Translational induction of the inhibitor of apoptosis protein HIAP2 during endoplasmic reticulum stress attenuates cell death and is mediated via an inducible internal ribosome entry site element. J Biol Chem 279:17148–171157

    Article  PubMed  CAS  Google Scholar 

  • Wei L, Simarro M, Kedersha N et al (2004) FAST is a survival protein that senses mitochondrial stress and modulates TIA-1-regulated changes in protein expression. Mol Cell Biol 24:10718–10732

    Article  Google Scholar 

  • Yang D, Halaby M, Zhang Y (2006) The identification of an internal ribosome entry site in the 5’-untranslated region of p53 mRNA provides a novel mechanism for the regulation of its translation following DNA damage. Oncogene 25:4613–4619

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Kaufman R (2004) Signaling the unfolded protein response from the endoplasmic reticulum. J Biol Chem 279:25935–25938

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, McGrath B, Reinert J et al (2002) The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice. Mol Cell Biol 22:6681–6688

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Lichtenstein M.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gera, J., Lichtenstein, A. (2013). IRES-Dependent, Cap-Independent Translation in Multiple Myeloma. In: Lentzsch, S. (eds) Genetic and Molecular Epidemiology of Multiple Myeloma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4660-6_4

Download citation

Publish with us

Policies and ethics