Skip to main content

Optically Interconnected High Performance Data Centers

  • Chapter
  • First Online:
Optical Interconnects for Future Data Center Networks

Part of the book series: Optical Networks ((OPNW))

  • 2079 Accesses

Abstract

Large-scale computing systems, once solely the domain of state-of-the-art supercomputers, are now represented by an increasingly heterogeneous class of cluster-oriented computational platforms. In particular, the recent growth in demand for cloud-based services combined with the accelerated growth in performance of commodity microprocessors has fueled the rapid emergence of data centers and computer clusters consisting of upwards of tens of thousands of nodes, resulting in system sizes rivaling and, in some cases, surpassing that of modern supercomputers. As these systems continue to scale in size, the critical performance bottleneck has shifted from the server to the network, mirroring the trend observed in supercomputing systems. Photonic interconnects, capable of ultra-high capacities and low power densities, can enable the continued scaling of these large-scale clusters. However, these systems represent a wide range of computing classes, ranging from highly specialized designs to commodity and cost-driven computing environments. As a result, any optical network interconnecting these systems must be highly agile in order to support the widely varying traffic patterns characteristic of the application classes these systems were built to support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal GP(2002) Fiber-optic communication systems. Wiley, New York

    Google Scholar 

  2. Gnauck AH, Charlet G, Tran P, Winzer PJ, Doerr CR, Centanni JC, Burrows EC, Kawanishi T, Sakamoto T, Higuma K (2008) 25.6-Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals. IEEE J Lightwave Technol 26:79–84

    Google Scholar 

  3. Benner AF, Ignatowski M, Kash JA, Kuchta DM, Ritter MB (2005) Exploitation of optical interconnects in future server architectures. IBM J Res Dev 49(4/5):755–775

    Google Scholar 

  4. Dally WJ, Towles B (2004) Principles and practices of interconnection networks. Morgan Kaufmann, San Francisco

    Google Scholar 

  5. Kash JA, Benner A, Doany FE, Kuchta D, Lee BG, Pepeljugoski P, Schares L, Schow C, Taubenblatt M (2011) Optical interconnects in future servers. In: Optical fiber communication conference, Paper OWQ1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2011-OWQ1

  6. Ramaswami R, Sivarajan KN (2002) Optical networks: a practical perspective, 2nd edn. Morgan Kaufmann, San Francisco

    Google Scholar 

  7. Liboiron-Ladouceur O, Shacham A, Small BA, Lee BG, Wang H, Lai CP, Biberman A, Bergman K (2008) The data vortex optical packet switched interconnection network. J Lightwave Technol 26 (13):1777–1789

    Google Scholar 

  8. Shacham A, Small BA, Liboiron-Ladouceur O, Bergman K (2005) A fully implemented 12 ×12 data vortex optical packet switching interconnection network. J Lightwave Technol 23(10):3066–3075

    Google Scholar 

  9. Yang Q, Bergman K, Hughes GD, Johnson FG (2001) WDM packet routing for high-capacity data networks. J Lightwave Technol 19(10):1420–1426

    Google Scholar 

  10. Yang Q, Bergman K (2002) Traffic control and WDM routing in the data vortex packet switch. IEEE Photon Technol Lett 14(2):236–238

    Google Scholar 

  11. Yang Q, Bergman K (2002) Performance of the data vortex switch architecture under nonuniform and bursty traffic. J Lightwave Technol 20(8):1242–1247

    Google Scholar 

  12. Liboiron-Ladouceur O, Small BA, Bergman K (2006) Physical layer scalability of a WDM optical packet interconnection network. J Lightwave Technol 24(1):262–270

    Google Scholar 

  13. Liboiron-Ladouceur O, Bergman K, Boroditsky M, Brodsky M (2006) Polarization-dependent gain in SOA-Based optical multistage interconnection networks. IEEE J Lightwave Technol 24(11):3959–3967

    Google Scholar 

  14. Small BA, Lee BG, Bergman K (2006) Flexibility of optical packet format in a complete 12 ×12 data vortex network. IEEE Photon Technol Lett 18(16):1693–1695

    Google Scholar 

  15. Small BA, Kato T, Bergman K (2005) Dynamic power consideration in a complete 12 ×12 optical packet switching fabric. IEEE Photon Technol Lett 17(11):2472–2474

    Google Scholar 

  16. Small BA, Bergman K (2005) Slot timing consideration in optical packet switching networks. IEEE Photon Technol Lett 17(11):2478–2480

    Google Scholar 

  17. Lee BG, Small BA, Bergman K (2006) Signal degradation through a 12 ×12 optical packet switching network. In: European conference on optical comm., We3.P.131, pp 1–2, 24-28. doi: 10.1109/ECOC.2006.4801324 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=%26arnumber=4801324%26isnumber=4800856

  18. Liboiron-Ladouceur O, Gray C, Keezer DC, Bergman K (2006) Bit-parallel message exchange and data recovery in optical packet switched interconnection networks. IEEE Photon Technol Lett 18(6):770–781

    Google Scholar 

  19. Shacham A, Small BA, Bergman K (2005) A wideband photonic packet injection control module for optical packet switching routers. IEEE Photon Technol Lett 17(12):2778–2780

    Google Scholar 

  20. Shacham A, Bergman K (2007) Optimizing the performance of a data vortex interconnection network. J Opt Networking 6(4):369–374

    Google Scholar 

  21. Liboiron-Ladouceur O, Bergman K (2006) Hybrid integration of a semiconductor optical amplifier for high throughput optical packet switched interconnection networks. Proc SPIE 6343–121, doi: 10.1117/12.708009

    Google Scholar 

  22. Liboiron-Ladouceur O, Bergman K (2006) Bistable switching node for optical packet switched networks. In: Proceedings 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS), 2006. Paper WW5, pp 631–632. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=%26arnumber=4054342%26isnumber=4054019

  23. Yang Q (2005) Improved performance using shortcut path routing within data vortex switch network. Electron Lett 41(22):1253–1254

    Google Scholar 

  24. Shacham A, Bergman K (2007) Building ultralow latency interconnection networks using photonic integration. IEEE Micro 27(4):6–20

    Google Scholar 

  25. Shacham A, Lee BG, Bergman K (2005) A scalable, self-routed, terabit capacity, photonic interconnection network. In: Proceedings of 13th Ann. IEEE Symp. High-Performance Interconnects (HOTI 05). IEEE CS Press, pp 147–150. doi: 10.1109/CONECT.2005.6 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=%26arnumber=1544590%26isnumber=32970

  26. Shacham A, Lee BG, Bergman K (2005) A wideband, non-blocking, 2x2 switching node for a SPINet network. IEEE Photonic Technol Lett 17(12):2742–2744

    Google Scholar 

  27. Vahdat A, Al-Fares M, Farrington N, Mysore RN, Porter G, Radhakrishnan S (2010) Scale-out networking in the data center. IEEE Micro 30(4):29–41

    Google Scholar 

  28. Abts D, Marty MR, Wells PM, Klausler P, Liu H (2010) Energy proportional datacenter networks. In: Proceedings of 37th annual international symposium on computer architecture (ISCA’10), pp 338–347 ACM, New York, NY, USA http://doi.acm.org/10.1145/1815961.1816004

  29. Meisner D, Gold BT, Wenisch TF (2009) PowerNap: eliminating server idle power. In: Proceedings of the 14th international conference on architectural support for programming languages and operating systems (ASPLOS’09), New York, NY, USA pp 205–216. http://doi.acm.org/10.1145/1508244.1508269

  30. Al-Fares M et al (2008) A scalable, commodity data center network architecture. SIGCOMM Comp Comm Rev 38(4):63–74

    Google Scholar 

  31. Greenberg A et al (2009) Vl2: a scalable and flexible data center network. SIGCOMM Comp Comm Rev 39(4):51–62

    Google Scholar 

  32. Farrington N, Porter G, Radhakrishnan S, Bazzaz HH, Subramanya V, Fainman Y, Papen G, Vahdat A (2010) Helios: a hybrid electrical/optical switch architecture for modular data centers. In: SIGCOMM ‘10 proceedings of the ACM SIGCOMM 2010 conference on SIGCOMM. ACM, New York, pp 339–350

    Google Scholar 

  33. Wang G, Andersen DG, Kaminsky M, Papagiannaki K, Ng TE, Kozuch M, Ryan M (2010) c-Through: part-time optics in data centers. In: SIGCOMM ‘10 proceedings of the ACM SIGCOMM 2010 conference on SIGCOMM. ACM, New York, pp 327–338

    Google Scholar 

  34. Singla A, Singh A, Ramachandran K, Xu L, Zhang Y (2010) Proteus: a topology malleable data center networks. In: Hotnets ‘10 proceedings of the ninth ACM SIGCOMM workshop on hot topics in networks. ACM, New York, article 8

    Google Scholar 

  35. Benson T, Anand A, Akella A, Zhang M (2009) Understanding data center traffic characteristics. In: Proceedings of the 1st ACM workshop on research on enterprise networking, Barcelona, Spain, 21 August 2009. WREN ‘09. ACM, New York, pp 65–72

    Google Scholar 

  36. Bazzaz HH, Tewari M, Wang G, Porter G, Ng TSE, Andersen TG, Kaminsky M, Kozuch MA, Vahdat A (2011) Switching the optical divide: fundamental challenges for hybrid electrical/optical datacenter networks. In: Proceedings of SOCC’11: ACM symposium on cloud computing, Cascais, Portugal, Oct 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keren Bergman or Howard Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bergman, K., Wang, H. (2013). Optically Interconnected High Performance Data Centers. In: Kachris, C., Bergman, K., Tomkos, I. (eds) Optical Interconnects for Future Data Center Networks. Optical Networks. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4630-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4630-9_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4629-3

  • Online ISBN: 978-1-4614-4630-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics