Skip to main content

Stem Cells and Mitochondria

  • Chapter
  • First Online:
Mitochondria and Their Role in Cardiovascular Disease
  • 1830 Accesses

Abstract

Stem cells are undifferentiated cells characterized by the presence of the potential for self-renewal and the unique ability to differentiate into various cell types—pluripotency. Various cell types proposed as candidates for cardiac cell-based therapy can be divided into two groups: allogenic and autologous according to their origin. Allogenic cells include embryonic stem cells (ESCs), fetal cardiomyocytes, and umbilical cord-derived cells, whereas autologous or adult stem cells include bone-marrow- and adipose-derived stem cells, skeletal myoblasts, resident cardiac progenitor cells, and induced pluripotent stem cells (iPSCs). Different cell types and delivery strategies have been examined in experimental and clinical settings; however, neither the ideal cell type nor cell delivery method for cardiac cell therapy has yet emerged.

Emerging evidence suggests that mitochondria play an essential role in ESC maintenance and differentiation. Undifferentiated ESCs and iPSCs contain the decreased number of immature mitochondria displaying perinuclear localization. Levels of mtDNA and factors, implicated in mtDNA maintenance, are also significantly diminished. Early embryos, undifferentiated ESCs, and iPSCs typically exhibit prevalence of anaerobic glycolysis as the major energy source. Expression of glycolytic enzymes is upregulated, whereas expression of subunits of ETC is downregulated resulting in lower O2 consumption and lower levels of intracellular ATP. Upon ESC differentiation into cardiomyocytes, the expression of glycolytic enzymes is downregulated, while the expression of OXPHOS subunits and citric acid cycle enzymes is upregulated. Hence O2 consumption, OXPHOS, and ATP generation are significantly increased, mtDNA replication and mitochondrial biogenesis are resumed, and mature mitochondrial networks are formed.

Switch in energy metabolism from glycolysis to OXPHOS during differentiation of ESCs can lead to increase in intracellular levels of reactive oxygen species (ROS). The upregulation of the antioxidant system in differentiating ESCs does not compensate the increased generation of ROS. Accumulation of oxidative damages in mtDNA in differentiating ESCs leads to mutations in mitochondrial genomes affecting ATP production, Ca2+ homeostasis, cell proliferation and differentiation resulting subsequently in apoptosis. ROS also play an important role as a critical signaling intermediate implicated in control of ESC proliferation and differentiation. ROS-induced deacetylase silent information regulator 1 (SIRT1) activation contributes to ESC maintenance by both inducing mitochondria-mediated apoptosis of damaged cells and by attenuating p53-mediated inhibition of the pluripotent factor Nanog. The p53-telomere axis appears to be also involved in this complex regulatory circuitry. Further insights gleaned from study of mitochondrial function in stem cells will no doubt accelerate the design of realistic clinical cell-based therapy for cardiovascular disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosamond W, Flegal K, Friday G, et al. Heart disease and stroke statistics–2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2007;115(5):e69–171.

    PubMed  Google Scholar 

  2. Taylor DA, Zenovich AG. Cardiovascular cell therapy and endogenous repair. Diabetes Obes Metab. 2008;10 Suppl 4:5–15.

    PubMed  Google Scholar 

  3. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation. 2011;123(4):e18–209.

    PubMed  Google Scholar 

  4. Passier R, van Laake LW, Mummery CL. Stem-cell-based therapy and lessons from the heart. Nature. 2008;453(7193):322–9.

    PubMed  CAS  Google Scholar 

  5. Laflamme MA, Murry CE. Heart regeneration. Nature. 2011;473(7347):326–35.

    PubMed  CAS  Google Scholar 

  6. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    PubMed  CAS  Google Scholar 

  7. Bandy B, Davison AJ. Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging? Free Radic Biol Med. 1990;8(6):523–39.

    PubMed  CAS  Google Scholar 

  8. Chinnery PF, Samuels DC, Elson J, Turnbull DM. Accumulation of mitochondrial DNA mutations in ageing, cancer, and mitochondrial disease: is there a common mechanism? Lancet. 2002;360(9342):1323–5.

    PubMed  CAS  Google Scholar 

  9. Maitra A, Arking DE, Shivapurkar N, et al. Genomic alterations in cultured human embryonic stem cells. Nat Genet. 2005;37(10):1099–103.

    PubMed  CAS  Google Scholar 

  10. Birch-Machin MA. The role of mitochondria in ageing and carcinogenesis. Clin Exp Dermatol. 2006;31(4):548–52.

    PubMed  CAS  Google Scholar 

  11. Pi Y, Goldenthal MJ, Marin-Garcia J. Mitochondrial channelopathies in aging. J Mol Med. 2007;85(9):937–51.

    PubMed  CAS  Google Scholar 

  12. Bugger H, Abel ED. Mitochondria in the diabetic heart. Cardiovasc Res. 2010;88(2):229–40.

    PubMed  CAS  Google Scholar 

  13. Falk MJaS N. Mitochondrial genetic diseases. Curr Opin Pediatr. 2010;22:711–6.

    Google Scholar 

  14. Wong LJ. Molecular genetics of mitochondrial disorders. Dev Disabil Res Rev. 2010;16(2):154–62.

    PubMed  Google Scholar 

  15. Raju R, Jian B, Hubbard W, Chaudry I. The mitoscriptome in aging and disease. Aging Dis. 2011;2(2):174–80.

    PubMed  Google Scholar 

  16. Kehat I, Kenyagin-Karsenti D, Snir M, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001;108(3):407–14.

    PubMed  CAS  Google Scholar 

  17. Passier R, Denning C, Mummery C. Cardiomyocytes from human embryonic stem cells. Handb Exp Pharmacol. 2006;174:101–22.

    PubMed  CAS  Google Scholar 

  18. Mummery C, Ward-van Oostwaard D, Doevendans P, et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation. 2003;107(21):2733–40.

    PubMed  CAS  Google Scholar 

  19. Orford KW, Scadden DT. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet. 2008;9(2):115–28.

    PubMed  CAS  Google Scholar 

  20. Chen L, Daley GQ. Molecular basis of pluripotency. Hum Mol Genet. 2008;17(R1):R23–7.

    PubMed  CAS  Google Scholar 

  21. Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 2008;132(4):661–80.

    PubMed  CAS  Google Scholar 

  22. Laflamme MA, Chen KY, Naumova AV, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007;25(9):1015–24.

    PubMed  CAS  Google Scholar 

  23. van Laake LW, Passier R, Monshouwer-Kloots J, et al. Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res. 2007;1(1):9–24.

    PubMed  Google Scholar 

  24. Li RK, Jia ZQ, Weisel RD, et al. Cardiomyocyte transplantation improves heart function. Ann Thorac Surg. 1996;62(3):654–60. discussion 660–651.

    PubMed  CAS  Google Scholar 

  25. Scorsin M, Hagege AA, Marotte F, et al. Does transplantation of cardiomyocytes improve function of infarcted myocardium? Circulation. 1997;96((9 Suppl)):II-188–93.

    Google Scholar 

  26. Saric T, Frenzel LP, Hescheler J. Immunological barriers to embryonic stem cell-derived therapies. Cells Tissues Organs. 2008;188(1–2):78–90.

    PubMed  Google Scholar 

  27. Laflamme MA, Murry CE. Regenerating the heart. Nat Biotechnol. 2005;23(7):845–56.

    PubMed  CAS  Google Scholar 

  28. Liu YP, Dovzhenko OV, Garthwaite MA, et al. Maintenance of pluripotency in human embryonic stem cells stably over-expressing enhanced green fluorescent protein. Stem Cells Dev. 2004;13(6):636–45.

    PubMed  CAS  Google Scholar 

  29. Nussbaum J, Minami E, Laflamme MA, et al. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J. 2007;21(7):1345–57.

    PubMed  CAS  Google Scholar 

  30. Ten GE. years of cord blood transplantation: from bench to bedside. Br J Haematol. 2009;147(2):192–9.

    Google Scholar 

  31. Henning RJ, Burgos JD, Vasko M, et al. Human cord blood cells and myocardial infarction: effect of dose and route of administration on infarct size. Cell Transplant. 2007;16(9):907–17.

    PubMed  Google Scholar 

  32. Henning RJ, Aufman J, Shariff M, et al. Human umbilical cord blood mononuclear cells decrease fibrosis and increase cardiac function in cardiomyopathy. Regen Med. 2010;5(1):45–54.

    PubMed  Google Scholar 

  33. Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997;90(12):5002–12.

    PubMed  CAS  Google Scholar 

  34. Goodell MA, Rosenzweig M, Kim H, et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med. 1997;3(12):1337–45.

    PubMed  CAS  Google Scholar 

  35. Sato T, Laver JH, Ogawa M. Reversible expression of CD34 by murine hematopoietic stem cells. Blood. 1999;94(8):2548–54.

    PubMed  CAS  Google Scholar 

  36. Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation. 1999;100(19 Suppl):II247–56.

    PubMed  CAS  Google Scholar 

  37. Haider H, Ashraf M. Bone marrow stem cell transplantation for cardiac repair. Am J Physiol Heart Circ Physiol. 2005;288(6):H2557–67.

    PubMed  CAS  Google Scholar 

  38. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    PubMed  CAS  Google Scholar 

  39. Eisenberg LM, Burns L, Eisenberg CA. Hematopoietic cells from bone marrow have the potential to differentiate into cardiomyocytes in vitro. Anat Rec A Discov Mol Cell Evol Biol. 2003;274(1):870–82.

    PubMed  Google Scholar 

  40. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature. 2003;425(6961):968–73.

    PubMed  CAS  Google Scholar 

  41. Nygren JM, Jovinge S, Breitbach M, et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med. 2004;10(5):494–501.

    PubMed  CAS  Google Scholar 

  42. Zhang N, Mustin D, Reardon W, et al. Blood-borne stem cells differentiate into vascular and cardiac lineages during normal development. Stem Cells Dev. 2006;15(1):17–28.

    PubMed  Google Scholar 

  43. Kawada H, Fujita J, Kinjo K, et al. Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood. 2004;104(12):3581–7.

    PubMed  CAS  Google Scholar 

  44. Rota M, Kajstura J, Hosoda T, et al. Bone marrow cells adopt the cardiomyogenic fate in vivo. Proc Natl Acad Sci USA. 2007;104(45):17783–8.

    PubMed  CAS  Google Scholar 

  45. Ryan JM, Barry FP, Murphy JM, Mahon BP. Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond). 2005;2:8.

    Google Scholar 

  46. Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature. 2008;451(7181):937–42.

    PubMed  CAS  Google Scholar 

  47. Korf-Klingebiel M, Kempf T, Sauer T, et al. Bone marrow cells are a rich source of growth factors and cytokines: implications for cell therapy trials after myocardial infarction. Eur Heart J. 2008;29(23):2851–8.

    PubMed  Google Scholar 

  48. Perin EC, Willerson JT, Pepine CJ, et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA. 2012;307(16):1717–26.

    PubMed  CAS  Google Scholar 

  49. Kao RL, Rizzo C, Magovern GJ. Satellite cells for myocardial regeneration [abstract]. Physiologist. 1989;32:220.

    Google Scholar 

  50. Menasche P. Skeletal myoblasts as a therapeutic agent. Prog Cardiovasc Dis. 2007;50(1):7–17.

    PubMed  Google Scholar 

  51. Siminiak T, Fiszer D, Jerzykowska O, et al. Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: the POZNAN trial. Eur Heart J. 2005;26(12):1188–95.

    PubMed  Google Scholar 

  52. Hagege AA, Carrion C, Menasche P, et al. Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet. 2003;361(9356):491–2.

    PubMed  Google Scholar 

  53. Smits PC, van Geuns RJ, Poldermans D, et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J Am Coll Cardiol. 2003;42(12):2063–9.

    PubMed  Google Scholar 

  54. Menasche P, Alfieri O, Janssens S, et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation. 2008;117(9):1189–200.

    PubMed  Google Scholar 

  55. Fernandes S, Amirault JC, Lande G, et al. Autologous myoblast transplantation after myocardial infarction increases the inducibility of ventricular arrhythmias. Cardiovasc Res. 2006;69(2):348–58.

    PubMed  CAS  Google Scholar 

  56. Oberpriller JO, Oberpriller JC. Response of the adult newt ventricle to injury. J Exp Zool. 1974;187(2):249–53.

    PubMed  CAS  Google Scholar 

  57. Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science. 2002;298(5601):2188–90.

    PubMed  CAS  Google Scholar 

  58. Lepilina A, Coon AN, Kikuchi K, et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell. 2006;127(3):607–19.

    PubMed  CAS  Google Scholar 

  59. Kikuchi K, Holdway JE, Werdich AA, et al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature. 2010;464(7288):601–5.

    PubMed  CAS  Google Scholar 

  60. Jopling C, Sleep E, Raya M, Marti M, Raya A, Belmonte JC. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature. 2010;464(7288):606–9.

    PubMed  CAS  Google Scholar 

  61. Hsieh PC, Segers VF, Davis ME, et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med. 2007;13(8):970–4.

    PubMed  CAS  Google Scholar 

  62. Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102.

    PubMed  CAS  Google Scholar 

  63. Bergmann O, Zdunek S, Alkass K, Druid H, Bernard S, Frisen J. Identification of cardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover. Exp Cell Res. 2011;317(2):188–94.

    PubMed  CAS  Google Scholar 

  64. Kajstura J, Urbanek K, Perl S, et al. Cardiomyogenesis in the adult human heart. Circ Res. 2010;107(2):305–15.

    PubMed  CAS  Google Scholar 

  65. Olivetti G, Melissari M, Capasso JM, Anversa P. Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res. 1991;68(6):1560–8.

    PubMed  CAS  Google Scholar 

  66. Olivetti G, Abbi R, Quaini F, et al. Apoptosis in the failing human heart. N Engl J Med. 1997;336(16):1131–41.

    PubMed  CAS  Google Scholar 

  67. Guerra S, Leri A, Wang X, et al. Myocyte death in the failing human heart is gender dependent. Circ Res. 1999;85(9):856–66.

    PubMed  CAS  Google Scholar 

  68. Murry CE, Reinecke H, Pabon LM. Regeneration gaps: observations on stem cells and cardiac repair. J Am Coll Cardiol. 2006;47(9):1777–85.

    PubMed  Google Scholar 

  69. Oh H, Bradfute SB, Gallardo TD, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA. 2003;100(21):12313–8.

    PubMed  CAS  Google Scholar 

  70. Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114(6):763–76.

    PubMed  CAS  Google Scholar 

  71. Messina E, De Angelis L, Frati G, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004;95(9):911–21.

    PubMed  CAS  Google Scholar 

  72. Laugwitz KL, Moretti A, Lam J, et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature. 2005;433(7026):647–53.

    PubMed  CAS  Google Scholar 

  73. Pfister O, Mouquet F, Jain M, et al. CD31- but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res. 2005;97(1):52–61.

    PubMed  CAS  Google Scholar 

  74. Smith RR, Barile L, Messina E, Marban E. Stem cells in the heart: what’s the buzz all about? Part 2: Arrhythmic risks and clinical studies. Heart Rhythm. 2008;5(6):880–7.

    PubMed  Google Scholar 

  75. Smith RR, Barile L, Messina E, Marban E. Stem cells in the heart: what’s the buzz all about?–Part 1: preclinical considerations. Heart Rhythm. 2008;5(5):749–57.

    PubMed  Google Scholar 

  76. Martin-Puig S, Wang Z, Chien KR. Lives of a heart cell: tracing the origins of cardiac progenitors. Cell Stem Cell. 2008;2(4):320–31.

    PubMed  CAS  Google Scholar 

  77. Smith RR, Barile L, Cho HC, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;115(7):896–908.

    PubMed  Google Scholar 

  78. Pfister O, Oikonomopoulos A, Sereti KI, et al. Role of the ATP-binding cassette transporter Abcg2 in the phenotype and function of cardiac side population cells. Circ Res. 2008;103(8):825–35.

    PubMed  CAS  Google Scholar 

  79. Bearzi C, Rota M, Hosoda T, et al. Human cardiac stem cells. Proc Natl Acad Sci USA. 2007;104(35):14068–73.

    PubMed  CAS  Google Scholar 

  80. Tang XL, Rokosh G, Sanganalmath SK, et al. Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation. 2010;121(2):293–305.

    PubMed  Google Scholar 

  81. Chimenti I, Smith RR, Li TS, et al. Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res. 2010;106(5):971–80.

    PubMed  CAS  Google Scholar 

  82. Nelson TJ, Martinez-Fernandez A, Yamada S, Perez-Terzic C, Ikeda Y, Terzic A. Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation. 2009;120(5):408–16.

    PubMed  Google Scholar 

  83. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    PubMed  CAS  Google Scholar 

  84. Yamanaka S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell. 2007;1(1):39–49.

    PubMed  CAS  Google Scholar 

  85. Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell. 2008;132(4):567–82.

    PubMed  CAS  Google Scholar 

  86. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    PubMed  CAS  Google Scholar 

  87. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.

    PubMed  CAS  Google Scholar 

  88. Dimos JT, Rodolfa KT, Niakan KK, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 2008;321(5893):1218–21.

    PubMed  CAS  Google Scholar 

  89. Ebert AD, Yu J, Rose Jr FF, et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 2009;457(7227):277–80.

    PubMed  CAS  Google Scholar 

  90. Hotta A, Cheung AY, Farra N, et al. Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nat Methods. 2009;6(5):370–6.

    PubMed  CAS  Google Scholar 

  91. Maehr R, Chen S, Snitow M, et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA. 2009;106(37):15768–73.

    PubMed  CAS  Google Scholar 

  92. Chambers I, Smith A. Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene. 2004;23(43):7150–60.

    PubMed  CAS  Google Scholar 

  93. Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008;26(1):101–6.

    PubMed  CAS  Google Scholar 

  94. Wernig M, Meissner A, Cassady JP, Jaenisch R. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell. 2008;2(1):10–2.

    PubMed  CAS  Google Scholar 

  95. Hanna J, Wernig M, Markoulaki S, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007;318(5858):1920–3.

    PubMed  CAS  Google Scholar 

  96. Narazaki G, Uosaki H, Teranishi M, et al. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation. 2008;118(5):498–506.

    PubMed  Google Scholar 

  97. Schenke-Layland K, Rhodes KE, Angelis E, et al. Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells. 2008;26(6):1537–46.

    PubMed  CAS  Google Scholar 

  98. Kuzmenkin A, Liang H, Xu G, et al. Functional characterization of cardiomyocytes derived from murine induced pluripotent stem cells in vitro. FASEB J. 2009;23(12):4168–80.

    PubMed  CAS  Google Scholar 

  99. Yang L, Soonpaa MH, Adler ED, et al. Human cardiovascular progenitor cells develop from a KDR  +  embryonic-stem-cell-derived population. Nature. 2008;453(7194):524–8.

    PubMed  CAS  Google Scholar 

  100. Xu XQ, Graichen R, Soo SY, et al. Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation. 2008;76(9):958–70.

    PubMed  CAS  Google Scholar 

  101. Zhu WZ, Xie Y, Moyes KW, Gold JD, Askari B, Laflamme MA. Neuregulin/ErbB signaling regulates cardiac subtype specification in differentiating human embryonic stem cells. Circ Res. 2010;107(6):776–86.

    PubMed  CAS  Google Scholar 

  102. Paige SL, Osugi T, Afanasiev OK, Pabon L, Reinecke H, Murry CE. Endogenous Wnt/beta-catenin signaling is required for cardiac differentiation in human embryonic stem cells. PLoS One. 2010;5(6):e11134.

    PubMed  Google Scholar 

  103. Shi Y, Desponts C, Do JT, Hahm HS, Scholer HR, Ding S. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell. 2008;3(5):568–74.

    PubMed  CAS  Google Scholar 

  104. Ieda M, Fu JD, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142(3):375–86.

    PubMed  CAS  Google Scholar 

  105. Efe JA, Hilcove S, Kim J, et al. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol. 2011;13(3):215–22.

    PubMed  CAS  Google Scholar 

  106. Kim D, Kim CH, Moon JI, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 2009;4(6):472–6.

    PubMed  CAS  Google Scholar 

  107. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature. 2009;458(7239):771–5.

    PubMed  CAS  Google Scholar 

  108. Woltjen K, Michael IP, Mohseni P, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 2009;458(7239):766–70.

    PubMed  CAS  Google Scholar 

  109. Yu J, Hu K, Smuga-Otto K, et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science. 2009;324(5928):797–801.

    PubMed  CAS  Google Scholar 

  110. Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7(5):618–30.

    PubMed  CAS  Google Scholar 

  111. Hofmann M, Wollert KC, Meyer GP, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation. 2005;111(17):2198–202.

    PubMed  Google Scholar 

  112. Hou D, Youssef EA, Brinton TJ, et al. Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation. 2005;112(9 Suppl):I150–6.

    PubMed  Google Scholar 

  113. Perin EC, Lopez J. Methods of stem cell delivery in cardiac diseases. Nat Clin Pract Cardiovasc Med. 2006;3 Suppl 1:S110–3.

    PubMed  Google Scholar 

  114. Beeres SL, Atsma DE, van Ramshorst J, Schalij MJ, Bax JJ. Cell therapy for ischaemic heart disease. Heart. 2008;94(9):1214–26.

    PubMed  Google Scholar 

  115. Martin-Rendon E, Brunskill SJ, Hyde CJ, Stanworth SJ, Mathur A, Watt SM. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J. 2008;29(15):1807–18.

    PubMed  CAS  Google Scholar 

  116. Freyman T, Polin G, Osman H, et al. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J. 2006;27(9):1114–22.

    PubMed  Google Scholar 

  117. Kurpisz M, Czepczynski R, Grygielska B, et al. Bone marrow stem cell imaging after intracoronary administration. Int J Cardiol. 2007;121(2):194–5.

    PubMed  CAS  Google Scholar 

  118. Hare JM, Traverse JH, Henry TD, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54(24):2277–86.

    PubMed  CAS  Google Scholar 

  119. Aicher A, Brenner W, Zuhayra M, et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation. 2003;107(16):2134–9.

    PubMed  Google Scholar 

  120. Blocklet D, Toungouz M, Berkenboom G, et al. Myocardial homing of nonmobilized peripheral-blood CD34+ cells after intracoronary injection. Stem Cells. 2006;24(2):333–6.

    PubMed  Google Scholar 

  121. Robey TE, Saiget MK, Reinecke H, Murry CE. Systems approaches to preventing transplanted cell death in cardiac repair. J Mol Cell Cardiol. 2008;45(4):567–81.

    PubMed  CAS  Google Scholar 

  122. Muller-Ehmsen J, Whittaker P, Kloner RA, et al. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J Mol Cell Cardiol. 2002;34(2):107–16.

    PubMed  Google Scholar 

  123. Zeng L, Hu Q, Wang X, et al. Bioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling. Circulation. 2007;115(14):1866–75.

    PubMed  Google Scholar 

  124. Hansson EM, Lindsay ME, Chien KR. Regeneration next: toward heart stem cell therapeutics. Cell Stem Cell. 2009;5(4):364–77.

    PubMed  CAS  Google Scholar 

  125. Rangappa S, Makkar R, Forrester J. Review article: current status of myocardial regeneration: new cell sources and new strategies. J Cardiovasc Pharmacol Ther. 2010;15(4):338–43.

    PubMed  Google Scholar 

  126. Malliaras K, Marban E. Cardiac cell therapy: where we’ve been, where we are, and where we should be headed. Br Med Bull. 2011;98:161–85.

    PubMed  Google Scholar 

  127. Martens TP, Godier AF, Parks JJ, et al. Percutaneous cell delivery into the heart using hydrogels polymerizing in situ. Cell Transplant. 2009;18(3):297–304.

    PubMed  Google Scholar 

  128. Hamdi H, Furuta A, Bellamy V, et al. Cell delivery: intramyocardial injections or epicardial deposition? A head-to-head comparison. Ann Thorac Surg. 2009;87(4):1196–203.

    PubMed  Google Scholar 

  129. Miyagawa S, Matsumiya G, Funatsu T, et al. Combined autologous cellular cardiomyoplasty using skeletal myoblasts and bone marrow cells for human ischemic cardiomyopathy with left ventricular assist system implantation: report of a case. Surg Today. 2009;39(2):133–6.

    PubMed  Google Scholar 

  130. Miyagawa S, Roth M, Saito A, Sawa Y, Kostin S. Tissue-engineered cardiac constructs for cardiac repair. Ann Thorac Surg. 2011;91(1):320–9.

    PubMed  Google Scholar 

  131. Matsuura K, Honda A, Nagai T, et al. Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. J Clin Invest. 2009;119(8):2204–17.

    PubMed  CAS  Google Scholar 

  132. Pasha Z, Wang Y, Sheikh R, Zhang D, Zhao T, Ashraf M. Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res. 2008;77(1):134–42.

    PubMed  CAS  Google Scholar 

  133. Hu X, Yu SP, Fraser JL, et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg. 2008;135(4):799–808.

    PubMed  CAS  Google Scholar 

  134. Haider H, Jiang S, Idris NM, Ashraf M. IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circ Res. 2008;103(11):1300–8.

    PubMed  CAS  Google Scholar 

  135. Zhang H, Wang ZZ. Mechanisms that mediate stem cell self-renewal and differentiation. J Cell Biochem. 2008;103(3):709–18.

    PubMed  CAS  Google Scholar 

  136. Savatier P, Huang S, Szekely L, Wiman KG, Samarut J. Contrasting patterns of retinoblastoma protein expression in mouse embryonic stem cells and embryonic fibroblasts. Oncogene. 1994;9(3):809–18.

    PubMed  CAS  Google Scholar 

  137. Burdon T, Smith A, Savatier P. Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol. 2002;12(9):432–8.

    PubMed  CAS  Google Scholar 

  138. Stead E, White J, Faast R, et al. Pluripotent cell division cycles are driven by ectopic Cdk2, cyclin A/E and E2F activities. Oncogene. 2002;21(54):8320–33.

    PubMed  CAS  Google Scholar 

  139. White J, Stead E, Faast R, Conn S, Cartwright P, Dalton S. Developmental activation of the Rb-E2F pathway and establishment of cell cycle-regulated cyclin-dependent kinase activity during embryonic stem cell differentiation. Mol Biol Cell. 2005;16(4):2018–27.

    PubMed  CAS  Google Scholar 

  140. Becker KA, Ghule PN, Therrien JA, et al. Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J Cell Physiol. 2006;209(3):883–93.

    PubMed  CAS  Google Scholar 

  141. Jirmanova L, Afanassieff M, Gobert-Gosse S, Markossian S, Savatier P. Differential contributions of ERK and PI3-kinase to the regulation of cyclin D1 expression and to the control of the G1/S transition in mouse embryonic stem cells. Oncogene. 2002;21(36):5515–28.

    PubMed  CAS  Google Scholar 

  142. Meloche S, Pouyssegur J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene. 2007;26(22):3227–39.

    PubMed  CAS  Google Scholar 

  143. Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995;80(2):179–85.

    PubMed  CAS  Google Scholar 

  144. Vaudry D, Stork PJ, Lazarovici P, Eiden LE. Signaling pathways for PC12 cell differentiation: making the right connections. Science. 2002;296(5573):1648–9.

    PubMed  CAS  Google Scholar 

  145. Faast R, White J, Cartwright P, Crocker L, Sarcevic B, Dalton S. Cdk6-cyclin D3 activity in murine ES cells is resistant to inhibition by p16(INK4a). Oncogene. 2004;23(2):491–502.

    PubMed  CAS  Google Scholar 

  146. Massague J. G1 cell-cycle control and cancer. Nature. 2004;432(7015):298–306.

    PubMed  CAS  Google Scholar 

  147. Fluckiger AC, Marcy G, Marchand M, et al. Cell cycle features of primate embryonic stem cells. Stem Cells. 2006;24(3):547–56.

    PubMed  CAS  Google Scholar 

  148. Silva J, Smith A. Capturing pluripotency. Cell. 2008;132(4):532–6.

    PubMed  CAS  Google Scholar 

  149. Niwa H. How is pluripotency determined and maintained? Development. 2007;134(4):635–46.

    PubMed  CAS  Google Scholar 

  150. Singh AM, Dalton S. The cell cycle and Myc intersect with mechanisms that regulate pluripotency and reprogramming. Cell Stem Cell. 2009;5(2):141–9.

    PubMed  CAS  Google Scholar 

  151. Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95(3):379–91.

    PubMed  CAS  Google Scholar 

  152. Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003;17(1):126–40.

    PubMed  CAS  Google Scholar 

  153. Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003;113(5):643–55.

    PubMed  CAS  Google Scholar 

  154. Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 2003;113(5):631–42.

    PubMed  CAS  Google Scholar 

  155. Kuroda T, Tada M, Kubota H, et al. Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol Cell Biol. 2005;25(6):2475–85.

    PubMed  CAS  Google Scholar 

  156. Rodda DJ, Chew JL, Lim LH, et al. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem. 2005;280(26):24731–7.

    PubMed  CAS  Google Scholar 

  157. Wang J, Rao S, Chu J, et al. A protein interaction network for pluripotency of embryonic stem cells. Nature. 2006;444(7117):364–8.

    PubMed  CAS  Google Scholar 

  158. Boyer LA, Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122(6):947–56.

    PubMed  CAS  Google Scholar 

  159. Loh YH, Wu Q, Chew JL, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 2006;38(4):431–40.

    PubMed  CAS  Google Scholar 

  160. Alon U. Network motifs: theory and experimental approaches. Nat Rev Genet. 2007;8(6):450–61.

    PubMed  CAS  Google Scholar 

  161. Masui S, Nakatake Y, Toyooka Y, et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol. 2007;9(6):625–35.

    PubMed  CAS  Google Scholar 

  162. Pesce M, Gross MK, Scholer HR. In line with our ancestors: Oct-4 and the mammalian germ. Bioessays. 1998;20(9):722–32.

    PubMed  CAS  Google Scholar 

  163. Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000;24(4):372–6.

    PubMed  CAS  Google Scholar 

  164. Meyer N, Penn LZ. Reflecting on 25 years with MYC. Nat Rev Cancer. 2008;8(12):976–90.

    PubMed  CAS  Google Scholar 

  165. Fernandez PC, Frank SR, Wang L, et al. Genomic targets of the human c-Myc protein. Genes Dev. 2003;17(9):1115–29.

    PubMed  CAS  Google Scholar 

  166. Guccione E, Martinato F, Finocchiaro G, et al. Myc-binding-site recognition in the human genome is determined by chromatin context. Nat Cell Biol. 2006;8(7):764–70.

    PubMed  CAS  Google Scholar 

  167. Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development. 2005;132(5):885–96.

    PubMed  CAS  Google Scholar 

  168. Hanna J, Markoulaki S, Mitalipova M, et al. Metastable pluripotent states in NOD-mouse-derived ESCs. Cell Stem Cell. 2009;4(6):513–24.

    PubMed  CAS  Google Scholar 

  169. Lee NS, Kim JS, Cho WJ, et al. miR-302b maintains “stemness” of human embryonal carcinoma cells by post-transcriptional regulation of Cyclin D2 expression. Biochem Biophys Res Commun. 2008;377(2):434–40.

    PubMed  CAS  Google Scholar 

  170. Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R. Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet. 2008;40(12):1478–83.

    PubMed  CAS  Google Scholar 

  171. Judson RL, Babiarz JE, Venere M, Blelloch R. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol. 2009;27(5):459–61.

    PubMed  CAS  Google Scholar 

  172. Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell. 2006;11(4):441–50.

    PubMed  CAS  Google Scholar 

  173. Kanellopoulou C, Muljo SA, Kung AL, et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 2005;19(4):489–501.

    PubMed  CAS  Google Scholar 

  174. Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ. Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA. 2005;102(34):12135–40.

    PubMed  CAS  Google Scholar 

  175. Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet. 2007;39(3):380–5.

    PubMed  CAS  Google Scholar 

  176. Card DA, Hebbar PB, Li L, et al. Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol Cell Biol. 2008;28(20):6426–38.

    PubMed  Google Scholar 

  177. Mineno J, Okamoto S, Ando T, et al. The expression profile of microRNAs in mouse embryos. Nucleic Acids Res. 2006;34(6):1765–71.

    PubMed  CAS  Google Scholar 

  178. Houbaviy HB, Murray MF, Sharp PA. Embryonic stem cell-specific MicroRNAs. Dev Cell. 2003;5(2):351–8.

    PubMed  CAS  Google Scholar 

  179. Suh MR, Lee Y, Kim JY, et al. Human embryonic stem cells express a unique set of microRNAs. Dev Biol. 2004;270(2):488–98.

    PubMed  CAS  Google Scholar 

  180. Sridharan R, Tchieu J, Mason MJ, et al. Role of the murine reprogramming factors in the induction of pluripotency. Cell. 2009;136(2):364–77.

    PubMed  CAS  Google Scholar 

  181. Rowland BD, Peeper DS. KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer. 2006;6(1):11–23.

    PubMed  CAS  Google Scholar 

  182. Nakatake Y, Fukui N, Iwamatsu Y, et al. Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol Cell Biol. 2006;26(20):7772–82.

    PubMed  CAS  Google Scholar 

  183. Li Y, McClintick J, Zhong L, Edenberg HJ, Yoder MC, Chan RJ. Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor Klf4. Blood. 2005;105(2):635–7.

    PubMed  CAS  Google Scholar 

  184. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54.

    PubMed  CAS  Google Scholar 

  185. Faro-Trindade I, Cook PR. A conserved organization of transcription during embryonic stem cell differentiation and in cells with high C value. Mol Biol Cell. 2006;17(7):2910–20.

    PubMed  CAS  Google Scholar 

  186. Lee JH, Hart SR, Skalnik DG. Histone deacetylase activity is required for embryonic stem cell differentiation. Genesis. 2004;38(1):32–8.

    PubMed  CAS  Google Scholar 

  187. Zipori D. The nature of stem cells: state rather than entity. Nat Rev Genet. 2004;5(11):873–8.

    PubMed  CAS  Google Scholar 

  188. Azuara V, Perry P, Sauer S, et al. Chromatin signatures of pluripotent cell lines. Nat Cell Biol. 2006;8(5):532–8.

    PubMed  CAS  Google Scholar 

  189. Bernstein BE, Mikkelsen TS, Xie X, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125(2):315–26.

    PubMed  CAS  Google Scholar 

  190. Boyer LA, Plath K, Zeitlinger J, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006;441(7091):349–53.

    PubMed  CAS  Google Scholar 

  191. Lee TI, Jenner RG, Boyer LA, et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell. 2006;125(2):301–13.

    PubMed  CAS  Google Scholar 

  192. Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA. A chromatin landmark and transcription initiation at most promoters in human cells. Cell. 2007;130(1):77–88.

    PubMed  CAS  Google Scholar 

  193. Baharvand H, Matthaei KI. The ultrastructure of mouse embryonic stem cells. Reprod Biomed Online. 2003;7(3):330–5.

    PubMed  Google Scholar 

  194. Oh SK, Kim HS, Ahn HJ, et al. Derivation and characterization of new human embryonic stem cell lines: SNUhES1, SNUhES2, and SNUhES3. Stem Cells. 2005;23(2):211–9.

    PubMed  Google Scholar 

  195. Cho YM, Kwon S, Pak YK, et al. Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun. 2006;348(4):1472–8.

    PubMed  CAS  Google Scholar 

  196. Coffman JA, Denegre JM. Mitochondria, redox signaling and axis specification in metazoan embryos. Dev Biol. 2007;308(2):266–80.

    PubMed  CAS  Google Scholar 

  197. St John JC, Ramalho-Santos J, Gray HL, et al. The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning Stem Cells. 2005;7(3):141–53.

    PubMed  CAS  Google Scholar 

  198. Lonergan T, Brenner C, Bavister B. Differentiation-related changes in mitochondrial properties as indicators of stem cell competence. J Cell Physiol. 2006;208(1):149–53.

    PubMed  CAS  Google Scholar 

  199. Dumollard R, Duchen M, Carroll J. The role of mitochondrial function in the oocyte and embryo. Curr Top Dev Biol. 2007;77:21–49.

    PubMed  CAS  Google Scholar 

  200. Dumollard R, Carroll J, Duchen MR, Campbell K, Swann K. Mitochondrial function and redox state in mammalian embryos. Semin Cell Dev Biol. 2009;20(3):346–53.

    PubMed  CAS  Google Scholar 

  201. Batten BE, Albertini DF, Ducibella T. Patterns of organelle distribution in mouse embryos during preimplantation development. Am J Anat. 1987;178(2):204–13.

    PubMed  CAS  Google Scholar 

  202. Barnett DK, Kimura J, Bavister BD. Translocation of active mitochondria during hamster preimplantation embryo development studied by confocal laser scanning microscopy. Dev Dyn. 1996;205(1):64–72.

    PubMed  CAS  Google Scholar 

  203. Wilding M, Dale B, Marino M, et al. Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum Reprod. 2001;16(5):909–17.

    PubMed  CAS  Google Scholar 

  204. Squirrell JM, Schramm RD, Paprocki AM, Wokosin DL, Bavister BD. Imaging mitochondrial organization in living primate oocytes and embryos using multiphoton microscopy. Microsc Microanal. 2003;9(3):190–201.

    PubMed  CAS  Google Scholar 

  205. Bavister BD. The mitochondrial contribution to stem cell biology. Reprod Fertil Dev. 2006;18(8):829–38.

    PubMed  CAS  Google Scholar 

  206. Piccoli C, Ria R, Scrima R, et al. Characterization of mitochondrial and extra-mitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity. J Biol Chem. 2005;280(28):26467–76.

    PubMed  CAS  Google Scholar 

  207. Chen CT, Shih YR, Kuo TK, Lee OK, Wei YH. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells. 2008;26(4):960–8.

    PubMed  CAS  Google Scholar 

  208. Facucho-Oliveira JM, St John C. The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev. 2009;5(2):140–58.

    PubMed  CAS  Google Scholar 

  209. El Shourbagy SH, Spikings EC, Freitas M, St John JC. Mitochondria directly influence fertilisation outcome in the pig. Reproduction. 2006;131(2):233–45.

    PubMed  CAS  Google Scholar 

  210. Santos TA, El Shourbagy S, St John JC. Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil Steril. 2006;85(3):584–91.

    PubMed  CAS  Google Scholar 

  211. Spikings EC, Alderson J, St John JC. Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development. Biol Reprod. 2007;76(2):327–35.

    PubMed  CAS  Google Scholar 

  212. May-Panloup P, Vignon X, Chretien MF, et al. Increase of mitochondrial DNA content and transcripts in early bovine embryogenesis associated with upregulation of mtTFA and NRF1 transcription factors. Reprod Biol Endocrinol. 2005;3:65.

    PubMed  Google Scholar 

  213. Thundathil J, Filion F, Smith LC. Molecular control of mitochondrial function in preimplantation mouse embryos. Mol Reprod Dev. 2005;71(4):405–13.

    PubMed  CAS  Google Scholar 

  214. Ma J, Svoboda P, Schultz RM, Stein P. Regulation of zygotic gene activation in the preimplantation mouse embryo: global activation and repression of gene expression. Biol Reprod. 2001;64(6):1713–21.

    PubMed  CAS  Google Scholar 

  215. McConnell JM, Petrie L. Mitochondrial DNA turnover occurs during preimplantation development and can be modulated by environmental factors. Reprod Biomed Online. 2004;9(4):418–24.

    PubMed  CAS  Google Scholar 

  216. St John JC, Moffatt O, D’Souza N. Aberrant heteroplasmic transmission of mtDNA in cloned pigs arising from double nuclear transfer. Mol Reprod Dev. 2005;72(4):450–60.

    PubMed  CAS  Google Scholar 

  217. St John JC, Facucho-Oliveira J, Jiang Y, Kelly R, Salah R. Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Hum Reprod Update. 2010;16(5):488–509.

    PubMed  CAS  Google Scholar 

  218. Facucho-Oliveira JM, Alderson J, Spikings EC, Egginton S, St John JC. Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J Cell Sci. 2007;120(Pt 22):4025–34.

    PubMed  CAS  Google Scholar 

  219. Sharova LV, Sharov AA, Piao Y, et al. Global gene expression profiling reveals similarities and differences among mouse pluripotent stem cells of different origins and strains. Dev Biol. 2007;307(2):446–59.

    PubMed  CAS  Google Scholar 

  220. Gaemers IC, Van Pelt AM, Themmen AP, De Rooij DG. Isolation and characterization of all-trans-retinoic acid-responsive genes in the rat testis. Mol Reprod Dev. 1998;50(1):1–6.

    PubMed  CAS  Google Scholar 

  221. Berdanier CD, Everts HB, Hermoyian C, Mathews CE. Role of vitamin A in mitochondrial gene expression. Diabetes Res Clin Pract. 2001;54 Suppl 2:S11–27.

    PubMed  CAS  Google Scholar 

  222. Hondares E, Mora O, Yubero P, et al. Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1alpha gene transcription: an autoregulatory loop controls PGC-1alpha expression in adipocytes via peroxisome proliferator-activated receptor-gamma coactivation. Endocrinology. 2006;147(6):2829–38.

    PubMed  CAS  Google Scholar 

  223. Trimarchi JR, Liu L, Porterfield DM, Smith PJ, Keefe DL. Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos. Biol Reprod. 2000;62(6):1866–74.

    PubMed  CAS  Google Scholar 

  224. Harvey AJ. The role of oxygen in ruminant preimplantation embryo development and metabolism. Anim Reprod Sci. 2007;98(1–2):113–28.

    PubMed  CAS  Google Scholar 

  225. Bavister BD, Squirrell JM. Mitochondrial distribution and function in oocytes and early embryos. Hum Reprod. 2000;15 Suppl 2:189–98.

    PubMed  Google Scholar 

  226. Riley JK, Moley KH. Glucose utilization and the PI3-K pathway: mechanisms for cell survival in preimplantation embryos. Reproduction. 2006;131(5):823–35.

    PubMed  CAS  Google Scholar 

  227. Chung S, Dzeja PP, Faustino RS, Perez-Terzic C, Behfar A, Terzic A. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat Clin Pract Cardiovasc Med. 2007;4 Suppl 1:S60–7.

    PubMed  CAS  Google Scholar 

  228. Prigione A, Adjaye J. Modulation of mitochondrial biogenesis and bioenergetic metabolism upon in vitro and in vivo differentiation of human ES and iPS cells. Int J Dev Biol. 2010;54(11–12):1729–41.

    PubMed  Google Scholar 

  229. Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells. 2010;28(4):721–33.

    PubMed  CAS  Google Scholar 

  230. Jezek P, Plecita-Hlavata L, Smolkova K, Rossignol R. Distinctions and similarities of cell bioenergetics and the role of mitochondria in hypoxia, cancer, and embryonic development. Int J Biochem Cell Biol. 2010;42(5):604–22.

    PubMed  CAS  Google Scholar 

  231. Menendez JA, Vellon L, Oliveras-Ferraros C, Cufi S, Vazquez-Martin A. mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: A roadmap from energy metabolism to stem cell renewal and aging. Cell Cycle. 2011;10(21):3658–77.

    PubMed  CAS  Google Scholar 

  232. Ezashi T, Das P, Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci USA. 2005;102(13):4783–8.

    PubMed  CAS  Google Scholar 

  233. Kondoh H, Lleonart ME, Nakashima Y, et al. A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid Redox Signal. 2007;9(3):293–9.

    PubMed  CAS  Google Scholar 

  234. Folmes CD, Nelson TJ, Martinez-Fernandez A, et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 2011;14(2):264–71.

    PubMed  CAS  Google Scholar 

  235. Panopoulos AD, Izpisua Belmonte JC. Anaerobicizing into pluripotency. Cell Metab. 2011;14(2):143–4.

    PubMed  CAS  Google Scholar 

  236. Schieke SM, Phillips D, McCoy Jr JP, et al. The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem. 2006;281(37):27643–52.

    PubMed  CAS  Google Scholar 

  237. Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature. 2007;450(7170):736–40.

    PubMed  CAS  Google Scholar 

  238. Twig G, Elorza A, Molina AJ, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008;27(2):433–46.

    PubMed  CAS  Google Scholar 

  239. Saretzki G, Walter T, Atkinson S, et al. Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells. Stem Cells. 2008;26(2):455–64.

    PubMed  CAS  Google Scholar 

  240. Pfeiffer T, Schuster S, Bonhoeffer S. Cooperation and competition in the evolution of ATP-producing pathways. Science. 2001;292(5516):504–7.

    PubMed  CAS  Google Scholar 

  241. Sauer H, Wartenberg M. Reactive oxygen species as signaling molecules in cardiovascular differentiation of embryonic stem cells and tumor-induced angiogenesis. Antioxid Redox Signal. 2005;7(11–12):1423–34.

    PubMed  CAS  Google Scholar 

  242. Lee S, Van Remmen H, Csete M. Sod2 overexpression preserves myoblast mitochondrial mass and function, but not muscle mass with aging. Aging Cell. 2009;8(3):296–310.

    PubMed  CAS  Google Scholar 

  243. D’Autreaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007;8(10):813–24.

    PubMed  Google Scholar 

  244. Jiang F, Zhang Y, Dusting GJ. NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev. 2011;63(1):218–42.

    PubMed  CAS  Google Scholar 

  245. Buggisch M, Ateghang B, Ruhe C, et al. Stimulation of ES-cell-derived cardiomyogenesis and neonatal cardiac cell proliferation by reactive oxygen species and NADPH oxidase. J Cell Sci. 2007;120(Pt 5):885–94.

    PubMed  CAS  Google Scholar 

  246. Bartsch C, Bekhite MM, Wolheim A, et al. NADPH oxidase and eNOS control cardiomyogenesis in mouse embryonic stem cells on ascorbic acid treatment. Free Radic Biol Med. 2011;51(2):432–43.

    PubMed  CAS  Google Scholar 

  247. Van Blerkom J, Davis PW, Lee J. ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum Reprod. 1995;10(2):415–24.

    PubMed  CAS  Google Scholar 

  248. Van Blerkom J, Davis P, Alexander S. Differential mitochondrial distribution in human pronuclear embryos leads to disproportionate inheritance between blastomeres: relationship to microtubular organization, ATP content and competence. Hum Reprod. 2000;15(12):2621–33.

    PubMed  Google Scholar 

  249. Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001;107(2):149–59.

    PubMed  CAS  Google Scholar 

  250. Han MK, Song EK, Guo Y, Ou X, Mantel C, Broxmeyer HE. SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell. 2008;2(3):241–51.

    PubMed  CAS  Google Scholar 

  251. Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003;11(3):577–90.

    PubMed  CAS  Google Scholar 

  252. Leu JI, Dumont P, Hafey M, Murphy ME, George DL. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol. 2004;6(5):443–50.

    PubMed  CAS  Google Scholar 

  253. Moll UM, Marchenko N, Zhang XK. p53 and Nur77/TR3—transcription factors that directly target mitochondria for cell death induction. Oncogene. 2006;25(34):4725–43.

    PubMed  CAS  Google Scholar 

  254. Qin H, Yu T, Qing T, et al. Regulation of apoptosis and differentiation by p53 in human embryonic stem cells. J Biol Chem. 2007;282(8):5842–52.

    PubMed  CAS  Google Scholar 

  255. Yamane T, Dylla SJ, Muijtjens M, Weissman IL. Enforced Bcl-2 expression overrides serum and feeder cell requirements for mouse embryonic stem cell self-renewal. Proc Natl Acad Sci USA. 2005;102(9):3312–7.

    PubMed  CAS  Google Scholar 

  256. Fujita J, Crane AM, Souza MK, et al. Caspase activity mediates the differentiation of embryonic stem cells. Cell Stem Cell. 2008;2(6):595–601.

    PubMed  CAS  Google Scholar 

  257. Janzen V, Fleming HE, Riedt T, et al. Hematopoietic stem cell responsiveness to exogenous signals is limited by caspase-3. Cell Stem Cell. 2008;2(6):584–94.

    PubMed  CAS  Google Scholar 

  258. Ahrlund-Richter L, De Luca M, Marshak DR, Munsie M, Veiga A, Rao M. Isolation and production of cells suitable for human therapy: challenges ahead. Cell Stem Cell. 2009;4(1):20–6.

    PubMed  Google Scholar 

  259. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.

    PubMed  CAS  Google Scholar 

  260. Pedersen PL. Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res. 1978;22:190–274.

    PubMed  CAS  Google Scholar 

  261. Jose C, Bellance N, Rossignol R. Choosing between glycolysis and oxidative phosphorylation: a tumor’s dilemma? Biochim Biophys Acta. 2011;1807(6):552–61.

    PubMed  CAS  Google Scholar 

  262. Sahin E, Depinho RA. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature. 2010;464(7288):520–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marín-García, J. (2013). Stem Cells and Mitochondria. In: Mitochondria and Their Role in Cardiovascular Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4599-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4599-9_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-4598-2

  • Online ISBN: 978-1-4614-4599-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics