Skip to main content

Mitochondrial Dynamics in Health and Disease

  • Chapter
  • First Online:
Mitochondria and Their Role in Cardiovascular Disease
  • 1813 Accesses

Abstract

The two opposing highly regulated processes, division (fission) and fusion, determine cell-type-specific mitochondrial morphology, intracellular distribution, and activity. These finely tuned processes modulate a variety of mitochondrial functions allowing living cells to respond properly to frequently changing environmental conditions. Tightly controlled balance between fusion and fission is of particular importance in the high-energy-demanding cells, such as cardiac, skeletal muscle, or neuronal cells. A shift toward fission leads to mitochondrial fragmentation, observed in quiescent cells, while a shift toward fusion results in the formation of the large mitochondrial networks, found in metabolically active cells.

Large dynamin-related proteins, mitofusins (MFN1, MFN2) and optic atrophy 1 (OPA1) protein, constitute the core machinery promoting mitochondrial fusion. MFN1 and MFN2 are localized on the mitochondrial outer membrane (MOM) and mediate MOM fusion, while OPA1, located in the mitochondrial inner membrane (MIM), promotes fusion of the MIM as well as cristae remodeling. A dynamin-related protein 1 (DRP1), fission 1 (FIS1) protein, and mitochondrial fission factor (MFF) are core components of mitochondrial fission machinery in human cells. All three fission proteins are localized in the MOM, while currently very little is known about fission of the MIM.

Impairment of mitochondrial dynamics has been associated with various human disorders. Currently the most characterized mutations in components involved in mitochondrial dynamics have been found in inherited neurodegenerative disorders, such as autosomal dominant optic atrophy, Charcot-Marie-Tooth neuropathy, abnormal brain development, and the Wolf-Hirschhorn syndrome. Defects in mitochondrial dynamics also contribute to the pathogenesis of age-related progressive neurodegenerative disorders, such as Alzheimer’s, Parkinson’s, and Huntington’s diseases.

Although the myocardium is characterized by high levels of the major factors involved in mitochondrial fusion and fission, the role of mitochondrial dynamics in the heart has only begun to be uncovered. Emerging evidence strongly suggests that impairment of balance of mitochondrial fusion and fission can be associated with various cardiovascular diseases, including ischemia-reperfusion injury (IRI), various cardiomyopathies, and heart failure (HF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skulachev VP. Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem Sci. 2001;26(1):23–9.

    PubMed  CAS  Google Scholar 

  2. Collins TJ, Berridge MJ, Lipp P, Bootman MD. Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J. 2002;21(7):1616–27.

    PubMed  CAS  Google Scholar 

  3. Merz S, Westermann B. Genome-wide deletion mutant analysis reveals genes required for respiratory growth, mitochondrial genome maintenance and mitochondrial protein synthesis in Saccharomyces cerevisiae. Genome Biol. 2009;10(9):R95.

    PubMed  Google Scholar 

  4. Rojo M, Legros F, Chateau D, Lombes A. Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci. 2002;115(Pt 8):1663–74.

    PubMed  CAS  Google Scholar 

  5. Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ, Rizzuto R. Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2  +  −mediated apoptosis. Mol Cell. 2004;16(1):59–68.

    PubMed  CAS  Google Scholar 

  6. Frieden M, James D, Castelbou C, Danckaert A, Martinou JC, Demaurex N. Ca(2+) homeostasis during mitochondrial fragmentation and perinuclear clustering induced by hFis1. J Biol Chem. 2004;279(21):22704–14.

    PubMed  CAS  Google Scholar 

  7. Gottlieb RA, Gustafsson AB. Mitochondrial turnover in the heart. Biochim Biophys Acta. 2011;1813(7):1295–301.

    PubMed  CAS  Google Scholar 

  8. Chung S, Dzeja PP, Faustino RS, Perez-Terzic C, Behfar A, Terzic A. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat Clin Pract Cardiovasc Med. 2007;4 Suppl 1:S60–7.

    PubMed  CAS  Google Scholar 

  9. Youle RJ, Karbowski M. Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol. 2005;6(8):657–63.

    PubMed  CAS  Google Scholar 

  10. Detmer SA, Chan DC. Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol. 2007;8(11):870–9.

    PubMed  CAS  Google Scholar 

  11. Liesa M, Palacin M, Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev. 2009;89(3):799–845.

    PubMed  CAS  Google Scholar 

  12. Kane LA, Youle RJ. Mitochondrial fission and fusion and their roles in the heart. J Mol Med (Berl). 2010;88(10):971–9.

    Google Scholar 

  13. Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol. 2010;11(12):872–84.

    PubMed  CAS  Google Scholar 

  14. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003;160(2):189–200.

    PubMed  CAS  Google Scholar 

  15. Chen H, Chomyn A, Chan DC. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem. 2005;280(28):26185–92.

    PubMed  CAS  Google Scholar 

  16. Davies VJ, Hollins AJ, Piechota MJ, et al. Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum Mol Genet. 2007;16(11):1307–18.

    PubMed  CAS  Google Scholar 

  17. Labrousse AM, Zappaterra MD, Rube DA, van der Bliek AM. C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol Cell. 1999;4(5):815–26.

    PubMed  CAS  Google Scholar 

  18. Delettre C, Lenaers G, Griffoin JM, et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet. 2000;26(2):207–10.

    PubMed  CAS  Google Scholar 

  19. Alexander C, Votruba M, Pesch UE, et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet. 2000;26(2):211–5.

    PubMed  CAS  Google Scholar 

  20. Olichon A, Guillou E, Delettre C, et al. Mitochondrial dynamics and disease, OPA1. Biochim Biophys Acta. 2006;1763(5–6):500–9.

    PubMed  CAS  Google Scholar 

  21. Johnston PB, Gaster RN, Smith VC, Tripathi RC. A clinicopathologic study of autosomal dominant optic atrophy. Am J Ophthalmol. 1979;88(5):868–75.

    PubMed  CAS  Google Scholar 

  22. Kjer P, Jensen OA, Klinken L. Histopathology of eye, optic nerve and brain in a case of dominant optic atrophy. Acta Ophthalmol (Copenh). 1983;61(2):300–12.

    CAS  Google Scholar 

  23. Ferre M, Amati-Bonneau P, Tourmen Y, Malthiery Y, Reynier P. eOPA1: an online database for OPA1 mutations. Hum Mutat. 2005;25(5):423–8.

    PubMed  CAS  Google Scholar 

  24. Zanna C, Ghelli A, Porcelli AM, et al. OPA1 mutations associated with dominant optic atrophy impair oxidative phosphorylation and mitochondrial fusion. Brain. 2008;131(Pt 2):352–67.

    PubMed  Google Scholar 

  25. Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci USA. 2004;101(45):15927–32.

    PubMed  CAS  Google Scholar 

  26. Griparic L, van der Wel NN, Orozco IJ, Peters PJ, van der Bliek AM. Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem. 2004;279(18):18792–8.

    PubMed  CAS  Google Scholar 

  27. Frezza C, Cipolat S, Martins de Brito O, et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell. 2006;126(1):177–89.

    PubMed  CAS  Google Scholar 

  28. Olichon A, Baricault L, Gas N, et al. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem. 2003;278(10): 7743–6.

    PubMed  CAS  Google Scholar 

  29. Skre H. Genetic and clinical aspects of Charcot-Marie-Tooth ‘s disease. Clin Genet. 1974;6(2):98–118.

    PubMed  CAS  Google Scholar 

  30. Berger P, Young P, Suter U. Molecular cell biology of Charcot-Marie-Tooth disease. Neurogenetics. 2002;4(1):1–15.

    PubMed  CAS  Google Scholar 

  31. Suter U, Scherer SS. Disease mechanisms in inherited neuropathies. Nat Rev Neurosci. 2003;4(9):714–26.

    PubMed  CAS  Google Scholar 

  32. Zuchner S, Mersiyanova IV, Muglia M, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet. 2004;36(5):449–51.

    PubMed  Google Scholar 

  33. Zuchner S, De Jonghe P, Jordanova A, et al. Axonal neuropathy with optic atrophy is caused by mutations in mitofusin 2. Ann Neurol. 2006;59(2):276–81.

    PubMed  CAS  Google Scholar 

  34. Kijima K, Numakura C, Izumino H, et al. Mitochondrial GTPase mitofusin 2 mutation in Charcot-Marie-Tooth neuropathy type 2A. Hum Genet. 2005;116(1–2):23–7.

    PubMed  CAS  Google Scholar 

  35. Lawson VH, Graham BV, Flanigan KM. Clinical and electrophysiologic features of CMT2A with mutations in the mitofusin 2 gene. Neurology. 2005;65(2):197–204.

    PubMed  CAS  Google Scholar 

  36. Chung KW, Kim SB, Park KD, et al. Early onset severe and late-onset mild Charcot-Marie-Tooth disease with mitofusin 2 (MFN2) mutations. Brain. 2006;129(Pt 8):2103–18.

    PubMed  CAS  Google Scholar 

  37. Engelfried K, Vorgerd M, Hagedorn M, et al. Charcot-Marie-Tooth neuropathy type 2A: novel mutations in the mitofusin 2 gene (MFN2). BMC Med Genet. 2006;7:53.

    PubMed  Google Scholar 

  38. Baloh RH, Schmidt RE, Pestronk A, Milbrandt J. Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations. J Neurosci. 2007;27(2):422–30.

    PubMed  CAS  Google Scholar 

  39. Detmer SA, Chan DC. Complementation between mouse Mfn1 and Mfn2 protects mitochondrial fusion defects caused by CMT2A disease mutations. J Cell Biol. 2007;176(4):405–14.

    PubMed  CAS  Google Scholar 

  40. Detmer SA, Vande Velde C, Cleveland DW, Chan DC. Hindlimb gait defects due to motor axon loss and reduced distal muscles in a transgenic mouse model of Charcot-Marie-Tooth type 2A. Hum Mol Genet. 2008;17(3):367–75.

    PubMed  CAS  Google Scholar 

  41. Chen H, McCaffery JM, Chan DC. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell. 2007;130(3): 548–62.

    PubMed  CAS  Google Scholar 

  42. Loiseau D, Chevrollier A, Verny C, et al. Mitochondrial coupling defect in Charcot-Marie-Tooth type 2A disease. Ann Neurol. 2007;61(4):315–23.

    PubMed  CAS  Google Scholar 

  43. Amiott EA, Lott P, Soto J, et al. Mitochondrial fusion and function in Charcot-Marie-Tooth type 2A patient fibroblasts with mitofusin 2 mutations. Exp Neurol. 2008;211(1):115–27.

    PubMed  CAS  Google Scholar 

  44. Baxter RV, Ben Othmane K, Rochelle JM, et al. Ganglioside-induced differentiation-associated protein-1 is mutant in Charcot-Marie-Tooth disease type 4A/8q21. Nat Genet. 2002;30(1):21–2.

    PubMed  CAS  Google Scholar 

  45. Cuesta A, Pedrola L, Sevilla T, et al. The gene encoding ganglioside-induced differentiation-associated protein 1 is mutated in axonal Charcot-Marie-Tooth type 4A disease. Nat Genet. 2002;30(1):22–5.

    PubMed  CAS  Google Scholar 

  46. Niemann A, Ruegg M, La Padula V, Schenone A, Suter U. Ganglioside-induced differentiation associated protein 1 is a ­regulator of the mitochondrial network: new implications for Charcot-Marie-Tooth disease. J Cell Biol. 2005;170(7):1067–78.

    PubMed  CAS  Google Scholar 

  47. Wagner KM, Ruegg M, Niemann A, Suter U. Targeting and function of the mitochondrial fission factor GDAP1 are dependent on its tail-anchor. PLoS One. 2009;4(4):e5160.

    PubMed  Google Scholar 

  48. Waterham HR, Koster J, van Roermund CW, Mooyer PA, Wanders RJ, Leonard JV. A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med. 2007;356(17):1736–41.

    PubMed  CAS  Google Scholar 

  49. Bergemann AD, Cole F, Hirschhorn K. The etiology of Wolf-Hirschhorn syndrome. Trends Genet. 2005;21(3):188–95.

    PubMed  CAS  Google Scholar 

  50. Wright TJ, Ricke DO, Denison K, et al. A transcript map of the newly defined 165 kb Wolf-Hirschhorn syndrome critical region. Hum Mol Genet. 1997;6(2):317–24.

    PubMed  CAS  Google Scholar 

  51. Endele S, Fuhry M, Pak SJ, Zabel BU, Winterpacht A. LETM1, a novel gene encoding a putative EF-hand Ca(2+)-binding protein, flanks the Wolf-Hirschhorn syndrome (WHS) critical region and is deleted in most WHS patients. Genomics. 1999;60(2):218–25.

    PubMed  CAS  Google Scholar 

  52. Nowikovsky K, Froschauer EM, Zsurka G, et al. The LETM1/YOL027 gene family encodes a factor of the mitochondrial K  +  homeostasis with a potential role in the Wolf-Hirschhorn syndrome. J Biol Chem. 2004;279(29):30307–15.

    PubMed  CAS  Google Scholar 

  53. Tamai S, Iida H, Yokota S, et al. Characterization of the mitochondrial protein LETM1, which maintains the mitochondrial tubular shapes and interacts with the AAA-ATPase BCS1L. J Cell Sci. 2008;121(Pt 15):2588–600.

    PubMed  CAS  Google Scholar 

  54. Dimmer KS, Navoni F, Casarin A, et al. LETM1, deleted in Wolf-Hirschhorn syndrome is required for normal mitochondrial morphology and cellular viability. Hum Mol Genet. 2008;17(2):201–14.

    PubMed  CAS  Google Scholar 

  55. Felber JP, Ferrannini E, Golay A, et al. Role of lipid oxidation in pathogenesis of insulin resistance of obesity and type II diabetes. Diabetes. 1987;36(11):1341–50.

    PubMed  CAS  Google Scholar 

  56. Kelley DE, Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes. 2000;49(5):677–83.

    PubMed  CAS  Google Scholar 

  57. Storlien L, Oakes ND, Kelley DE. Metabolic flexibility. Proc Nutr Soc. 2004;63(2):363–8.

    PubMed  CAS  Google Scholar 

  58. Bach D, Pich S, Soriano FX, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem. 2003;278(19):17190–7.

    PubMed  CAS  Google Scholar 

  59. Pich S, Bach D, Briones P, et al. The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. Hum Mol Genet. 2005;14(11):1405–15.

    PubMed  CAS  Google Scholar 

  60. Bach D, Naon D, Pich S, et al. Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6. Diabetes. 2005;54(9):2685–93.

    PubMed  CAS  Google Scholar 

  61. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E. Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci. 2008;9(7):505–18.

    PubMed  CAS  Google Scholar 

  62. Wang X, Su B, Lee HG, et al. Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci. 2009;29(28):9090–103.

    PubMed  CAS  Google Scholar 

  63. Nakamura T, Lipton SA. Redox regulation of mitochondrial fission, protein misfolding, synaptic damage, and neuronal cell death: potential implications for Alzheimer’s and Parkinson’s diseases. Apoptosis. 2010;15(11):1354–63.

    PubMed  CAS  Google Scholar 

  64. Reddy PH, Mao P, Manczak M. Mitochondrial structural and functional dynamics in Huntington’s disease. Brain Res Rev. 2009;61(1):33–48.

    PubMed  CAS  Google Scholar 

  65. Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 2008;183(5):795–803.

    PubMed  CAS  Google Scholar 

  66. Matsuda N, Sato S, Shiba K, et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol. 2010;189(2):211–21.

    PubMed  CAS  Google Scholar 

  67. Ziviani E, Whitworth AJ. How could Parkin-mediated ubiquitination of mitofusin promote mitophagy? Autophagy. 2010;6(5):660–2.

    Google Scholar 

  68. Lutz AK, Exner N, Fett ME, et al. Loss of parkin or PINK1 ­function increases Drp1-dependent mitochondrial fragmentation. J Biol Chem. 2009;284(34):22938–51.

    PubMed  CAS  Google Scholar 

  69. Ziviani E, Tao RN, Whitworth AJ. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci USA. 2010;107(11):5018–23.

    PubMed  CAS  Google Scholar 

  70. Weihofen A, Thomas KJ, Ostaszewski BL, Cookson MR, Selkoe DJ. Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. Biochemistry. 2009;48(9):2045–52.

    PubMed  CAS  Google Scholar 

  71. Duchen MR. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med. 2004;25(4): 365–451.

    PubMed  CAS  Google Scholar 

  72. Kodde IF, van der Stok J, Smolenski RT, de Jong JW. Metabolic and genetic regulation of cardiac energy substrate preference. Comp Biochem Physiol A Mol Integr Physiol. 2007;146(1): 26–39.

    PubMed  Google Scholar 

  73. Riva A, Tandler B, Loffredo F, Vazquez E, Hoppel C. Structural differences in two biochemically defined populations of cardiac mitochondria. Am J Physiol Heart Circ Physiol. 2005;289(2):H868–72.

    PubMed  CAS  Google Scholar 

  74. Hoppel CL, Tandler B, Fujioka H, Riva A. Dynamic organization of mitochondria in human heart and in myocardial disease. Int J Biochem Cell Biol. 2009;41(10):1949–56.

    PubMed  CAS  Google Scholar 

  75. Lukyanenko V, Chikando A, Lederer WJ. Mitochondria in cardiomyocyte Ca2+ signaling. Int J Biochem Cell Biol. 2009;41(10):1957–71.

    PubMed  CAS  Google Scholar 

  76. Hom J, Sheu SS. Morphological dynamics of mitochondria–a special emphasis on cardiac muscle cells. J Mol Cell Cardiol. 2009;46(6):811–20.

    PubMed  CAS  Google Scholar 

  77. Schaper J, Froede R, Hein S, et al. Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation. 1991;83(2):504–14.

    PubMed  CAS  Google Scholar 

  78. Kanzaki Y, Terasaki F, Okabe M, et al. Giant mitochondria in the myocardium of a patient with mitochondrial cardiomyopathy: transmission and 3-dimensional scanning electron microscopy. Circulation. 2010;121(6):831–2.

    PubMed  Google Scholar 

  79. Kalra DK, Zoghbi WA. Myocardial hibernation in coronary artery disease. Curr Atheroscler Rep. 2002;4(2):149–55.

    PubMed  Google Scholar 

  80. Sharma VK, Ramesh V, Franzini-Armstrong C, Sheu SS. Transport of Ca2+ from sarcoplasmic reticulum to mitochondria in rat ventricular myocytes. J Bioenerg Biomembr. 2000;32(1):97–104.

    PubMed  CAS  Google Scholar 

  81. McCormack JG, Denton RM. The role of Ca2+ ions in the regulation of intramitochondrial metabolism and energy production in rat heart. Mol Cell Biochem. 1989;89(2):121–5.

    PubMed  CAS  Google Scholar 

  82. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 2004;287(4):C817–33.

    PubMed  CAS  Google Scholar 

  83. Matsuoka S, Sarai N, Jo H, Noma A. Simulation of ATP metabolism in cardiac excitation-contraction coupling. Prog Biophys Mol Biol. 2004;85(2–3):279–99.

    PubMed  CAS  Google Scholar 

  84. Spat A, Szanda G, Csordas G, Hajnoczky G. High- and low-calcium-dependent mechanisms of mitochondrial calcium signalling. Cell Calcium. 2008;44(1):51–63.

    PubMed  CAS  Google Scholar 

  85. Hom JR, Gewandter JS, Michael L, Sheu SS, Yoon Y. Thapsigargin induces biphasic fragmentation of mitochondria through calcium-mediated mitochondrial fission and apoptosis. J Cell Physiol. 2007;212(2):498–508.

    PubMed  CAS  Google Scholar 

  86. Saotome M, Safiulina D, Szabadkai G, et al. Bidirectional Ca2  +  −dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci USA. 2008;105(52):20728–33.

    PubMed  CAS  Google Scholar 

  87. Wang X, Schwarz TL. The mechanism of Ca2+  −  dependent regulation of kinesin-mediated mitochondrial motility. Cell. 2009;136(1):163–74.

    PubMed  CAS  Google Scholar 

  88. Cereghetti GM, Stangherlin A, Martins de Brito O, et al. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci USA. 2008;105(41): 15803–8.

    PubMed  CAS  Google Scholar 

  89. Han XJ, Lu YF, Li SA, et al. CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol. 2008;182(3):573–85.

    PubMed  CAS  Google Scholar 

  90. de Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 2008;456(7222):605–10.

    PubMed  Google Scholar 

  91. Hom J, Yu T, Yoon Y, Porter G, Sheu SS. Regulation of mitochondrial fission by intracellular Ca2+ in rat ventricular myocytes. Biochim Biophys Acta. 2010;1797(6–7):913–21.

    PubMed  CAS  Google Scholar 

  92. Sun CN, Dhalla NS, Olson RE. Formation of gigantic mitochondria in hypoxic isolated perfused rat hearts. Experientia. 1969;25(7):763–4.

    PubMed  CAS  Google Scholar 

  93. Yu T, Sheu SS, Robotham JL, Yoon Y. Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc Res. 2008;79(2):341–51.

    PubMed  CAS  Google Scholar 

  94. Beraud N, Pelloux S, Usson Y, et al. Mitochondrial dynamics in heart cells: very low amplitude high frequency fluctuations in adult cardiomyocytes and flow motion in non beating Hl-1 cells. J Bioenerg Biomembr. 2009;41(2):195–214.

    PubMed  CAS  Google Scholar 

  95. Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation. 2010;121(18): 2012–22.

    PubMed  CAS  Google Scholar 

  96. Stojanovski D, Koutsopoulos OS, Okamoto K, Ryan MT. Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology. J Cell Sci. 2004;117(Pt 7):1201–10.

    PubMed  CAS  Google Scholar 

  97. Parra V, Eisner V, Chiong M, et al. Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis. Cardiovasc Res. 2008;77(2):387–97.

    PubMed  CAS  Google Scholar 

  98. Iglewski M, Hill JA, Lavandero S, Rothermel BA. Mitochondrial fission and autophagy in the normal and diseased heart. Curr Hypertens Rep. 2010;12(6):418–25.

    PubMed  Google Scholar 

  99. Santel A, Frank S, Gaume B, Herrler M, Youle RJ, Fuller MT. Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci. 2003;116(Pt 13):2763–74.

    PubMed  CAS  Google Scholar 

  100. Akepati VR, Muller EC, Otto A, Strauss HM, Portwich M, Alexander C. Characterization of OPA1 isoforms isolated from mouse tissues. J Neurochem. 2008;106(1):372–83.

    PubMed  CAS  Google Scholar 

  101. Imoto M, Tachibana I, Urrutia R. Identification and functional characterization of a novel human protein highly related to the yeast dynamin-like GTPase Vps1p. J Cell Sci. 1998;111(Pt 10):1341–9.

    PubMed  CAS  Google Scholar 

  102. Brady NR, Hamacher-Brady A, Gottlieb RA. Proapoptotic BCL-2 family members and mitochondrial dysfunction during ischemia/reperfusion injury, a study employing cardiac HL-1 cells and GFP biosensors. Biochim Biophys Acta. 2006;1757(5–6):667–78.

    PubMed  CAS  Google Scholar 

  103. Cassidy-Stone A, Chipuk JE, Ingerman E, et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell. 2008;14(2):193–204.

    PubMed  CAS  Google Scholar 

  104. Plotnikov EY, Vasileva AK, Arkhangelskaya AA, Pevzner IB, Skulachev VP, Zorov DB. Interrelations of mitochondrial fragmentation and cell death under ischemia/reoxygenation and UV-irradiation: protective effects of SkQ1, lithium ions and insulin. FEBS Lett. 2008;582(20):3117–24.

    PubMed  CAS  Google Scholar 

  105. Ashrafian H, Docherty L, Leo V, et al. A mutation in the mitochondrial fission gene Dnm1l leads to cardiomyopathy. PLoS Genet. 2010;6(6):e1001000.

    PubMed  Google Scholar 

  106. Sharov VG, Goussev A, Lesch M, Goldstein S, Sabbah HN. Abnormal mitochondrial function in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol. 1998;30(9):1757–62.

    PubMed  CAS  Google Scholar 

  107. Zak R, Rabinowitz M, Rajamanickam C, Merten S, Kwiatkowska-Patzer B. Mitochondrial proliferation in cardiac hypertrophy. Basic Res Cardiol. 1980;75(1):171–8.

    PubMed  CAS  Google Scholar 

  108. Duvezin-Caubet S, Jagasia R, Wagener J, et al. Proteolytic ­processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J Biol Chem. 2006;281(49): 37972–9.

    PubMed  CAS  Google Scholar 

  109. Papanicolaou KN, Khairallah RJ, Ngoh GA, et al. Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol Cell Biol. 2011;31(6):1309–28.

    PubMed  CAS  Google Scholar 

  110. Chen Y, Liu Y, Dorn 2nd GW. Mitochondrial Fusion is Essential for Organelle Function and Cardiac Homeostasis. Circ Res. 2011;109(12):1327–31.

    PubMed  CAS  Google Scholar 

  111. Chen H, Vermulst M, Wang YE, et al. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell. 2010;141(2):280–9.

    PubMed  CAS  Google Scholar 

  112. Dec GW, Fuster V. Idiopathic dilated cardiomyopathy. N Engl J Med. 1994;331(23):1564–75.

    PubMed  CAS  Google Scholar 

  113. Seidman JG, Seidman C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell. 2001;104(4):557–67.

    PubMed  CAS  Google Scholar 

  114. Karkkainen S, Peuhkurinen K. Genetics of dilated cardiomyopathy. Ann Med. 2007;39(2):91–107.

    PubMed  CAS  Google Scholar 

  115. Baandrup U, Florio RA, Roters F, Olsen EG. Electron microscopic investigation of endomyocardial biopsy samples in hypertrophy and cardiomyopathy. A semiquantitative study in 48 patients. Circulation. 1981;63(6):1289–98.

    PubMed  CAS  Google Scholar 

  116. Ramachandran R, Surka M, Chappie JS, et al. The dynamin middle domain is critical for tetramerization and higher-order self-assembly. EMBO J. 2007;26(2):559–66.

    PubMed  CAS  Google Scholar 

  117. Mears JA, Ray P, Hinshaw JE. A corkscrew model for dynamin constriction. Structure. 2007;15(10):1190–202.

    PubMed  CAS  Google Scholar 

  118. Chen L, Gong Q, Stice JP, Knowlton AA. Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc Res. 2009;84(1):91–9.

    PubMed  CAS  Google Scholar 

  119. Molina AJ, Wikstrom JD, Stiles L, et al. Mitochondrial networking protects beta-cells from nutrient-induced apoptosis. Diabetes. 2009;58(10):2303–15.

    PubMed  CAS  Google Scholar 

  120. Lee YJ, Jeong SY, Karbowski M, Smith CL, Youle RJ. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell. 2004;15(11):5001–11.

    PubMed  CAS  Google Scholar 

  121. Arnoult D. Mitochondrial fragmentation in apoptosis. Trends Cell Biol. 2007;17(1):6–12.

    PubMed  CAS  Google Scholar 

  122. Martinou JC, Youle RJ. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell. 2011;21(1): 92–101.

    PubMed  CAS  Google Scholar 

  123. Wasiak S, Zunino R, McBride HM. Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol. 2007;177(3):439–50.

    PubMed  CAS  Google Scholar 

  124. Hoppins S, Edlich F, Cleland MM, et al. The soluble form of Bax regulates mitochondrial fusion via MFN2 homotypic complexes. Mol Cell. 2011;41(2):150–60.

    PubMed  CAS  Google Scholar 

  125. Guo X, Chen KH, Guo Y, Liao H, Tang J, Xiao RP. Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway. Circ Res. 2007;101(11):1113–22.

    PubMed  CAS  Google Scholar 

  126. Shen T, Zheng M, Cao C, et al. Mitofusin-2 is a major determinant of oxidative stress-mediated heart muscle cell apoptosis. J Biol Chem. 2007;282(32):23354–61.

    PubMed  CAS  Google Scholar 

  127. Neuspiel M, Zunino R, Gangaraju S, Rippstein P, McBride H. Activated mitofusin 2 signals mitochondrial fusion, interferes with Bax activation, and reduces susceptibility to radical induced depolarization. J Biol Chem. 2005;280(26):25060–70.

    PubMed  CAS  Google Scholar 

  128. Hamacher-Brady A, Brady NR, Gottlieb RA, Gustafsson AB. Autophagy as a protective response to Bnip3-mediated apoptotic signaling in the heart. Autophagy. 2006;2(4):307–9.

    PubMed  CAS  Google Scholar 

  129. Matsui Y, Takagi H, Qu X, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 2007;100(6):914–22.

    PubMed  CAS  Google Scholar 

  130. Kuzmicic J, Del Campo A, Lopez-Crisosto C, et al. Mitochondrial dynamics: a potential new therapeutic target for heart failure. Rev Esp Cardiol. 2011;64(10):916–23.

    PubMed  Google Scholar 

  131. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404(6779):787–90.

    PubMed  CAS  Google Scholar 

  132. Green K, Brand MD, Murphy MP. Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes. 2004;53 Suppl 1:S110–8.

    PubMed  CAS  Google Scholar 

  133. Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci USA. 2006;103(8):2653–8.

    PubMed  CAS  Google Scholar 

  134. Dabkowski ER, Williamson CL, Bukowski VC, et al. Diabetic cardiomyopathy-associated dysfunction in spatially distinct mitochondrial subpopulations. Am J Physiol Heart Circ Physiol. 2009;296(2):H359–69.

    PubMed  CAS  Google Scholar 

  135. Makino A, Scott BT, Dillmann WH. Mitochondrial fragmentation and superoxide anion production in coronary endothelial cells from a mouse model of type 1 diabetes. Diabetologia. 2010;53(8):1783–94.

    PubMed  CAS  Google Scholar 

  136. Ong SB, Hausenloy DJ. Mitochondrial morphology and cardiovascular disease. Cardiovasc Res. 2010;88(1):16–29.

    PubMed  CAS  Google Scholar 

  137. Zheng M, Xiao RP. Role of mitofusin 2 in cardiovascular oxidative injury. J Mol Med (Berl). 2010;88(10):987–91.

    CAS  Google Scholar 

  138. Ong SB, Gustafsson AB. New roles for mitochondria in cell death in the reperfused myocardium. Cardiovasc Res. 2012;94(2):190–6.

    PubMed  CAS  Google Scholar 

  139. Gottlieb RA, Mentzer RM. Autophagy during cardiac stress: joys and frustrations of autophagy. Annu Rev Physiol. 2010;72:45–59.

    PubMed  CAS  Google Scholar 

  140. Gottlieb RA, Carreira RS. Autophagy in health and disease. 5. Mitophagy as a way of life. Am J Physiol Cell Physiol. 2010;299(2):C203–10.

    PubMed  CAS  Google Scholar 

  141. Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12(1):9–14.

    PubMed  CAS  Google Scholar 

  142. Barsoum MJ, Yuan H, Gerencser AA, et al. Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J. 2006;25(16):3900–11.

    PubMed  CAS  Google Scholar 

  143. Twig G, Elorza A, Molina AJ, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008;27(2):433–46.

    PubMed  CAS  Google Scholar 

  144. Lee Y, Lee HY, Hanna RA, Gustafsson AB. Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. Am J Physiol Heart Circ Physiol. 2011;301(5):H1924–31.

    PubMed  CAS  Google Scholar 

  145. Terman A, Brunk UT. The aging myocardium: roles of mitochondrial damage and lysosomal degradation. Heart Lung Circ. 2005;14(2):107–14.

    PubMed  CAS  Google Scholar 

  146. Reis K, Fransson A, Aspenstrom P. The Miro GTPases: at the heart of the mitochondrial transport machinery. FEBS Lett. 2009;583(9):1391–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marín-García, J. (2013). Mitochondrial Dynamics in Health and Disease. In: Mitochondria and Their Role in Cardiovascular Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4599-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4599-9_17

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-4598-2

  • Online ISBN: 978-1-4614-4599-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics