Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 182))

  • 2202 Accesses

Abstract

In this chapter we study the existence and characterisation of pullback attractors for a non-autonomous version of the Chafee–Infante equation on the domain (0, π),

$${u}_{t} - {u}_{xx} = \lambda u - b(t){u}^{3},\qquad u(0,t) = u(\pi ,t) = 0,$$
(13.1)

when there exist 0 < b 0 < B 0 such that

$$0 < {b}_{0} \leq b(t) \leq {B}_{0}.$$

Theorem 12.1 guarantees the local existence and uniqueness of solutions for an initial u(s) ∈ H 0 1(0, π), and Proposition 12.8 ensures that these solutions are globally defined. Monotonicity properties of the solutions of this equation (from Corollary 12.6) will play an essential role in our analysis, and we will be able to prove the existence of maximal and minimal bounded global solutions, ξ m ( ⋅) and ξ M ( ⋅), which provide ‘bounds’ on the asymptotic dynamics of the system, i.e. any bounded global solution ψ( ⋅) satisfies

$${\xi }_{m}(t) \leq \psi (t) \leq {\xi }_{M}(t)\qquad \mbox{ for all}\qquad t \in \mathbb{R}.$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angenent S (1988) The zero set of a solution of a parabolic equation. J Reine Angew Math 390:79-96

    MathSciNet  MATH  Google Scholar 

  • Burton TA, Hutson V (1991) Permanence for nonautonomous predator-prey systems. Differential Integral Equations 4:1269–1280

    MathSciNet  MATH  Google Scholar 

  • Butler G, Freedman H, Waltman P (1986) Uniformly persistent dynamical systems. Proc Amer Math Soc 96:425–430

    Article  MathSciNet  MATH  Google Scholar 

  • Cantrell RS, Cosner C (1996) Practical persistence in ecological models via comparison methods. Proc Roy Soc Edinburgh Sect A 126:247–272

    Article  MathSciNet  MATH  Google Scholar 

  • Cantrell RS, Cosner C, Hutson V (2003) Spatial ecology via reaction-diffusion equations. Wiley series in mathematical and computational biology. Wiley, Chichester

    MATH  Google Scholar 

  • Chafee N, Infante EF (1974) A bifurcation problem for a nonlinear partial differential equation of parabolic type. Appl Anal 4:17–37

    Article  MathSciNet  MATH  Google Scholar 

  • Chepyzhov VV, Vishik MI (2002) Attractors for equations of mathematical physics. Colloquium Publications 49, American Mathematical Society, Providence, RI

    Google Scholar 

  • Hale JK (1988) Asymptotic behavior of dissipative systems. Mathematical surveys and monographs, American Mathematival Society, Providence, RI

    MATH  Google Scholar 

  • Henry D (1981a) Geometric theory of semilinear parabolic equations. Lecture notes in mathematics, vol 840. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Kostin IN (1995) Lower semicontinuity of a non-hyperbolic attractor. J Lond Math Soc 52:568–582

    Article  MathSciNet  MATH  Google Scholar 

  • Langa JA, Robinson JC, Rodríguez-Bernal A, Suárez A (2009) Permanence and asymptotically stable complete trajectories for non-autonomous Lotka–Volterra models with diffusion. SIAM J Math Anal 40:2179–2216

    Article  MathSciNet  MATH  Google Scholar 

  • Matano H (1982) Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation. J Fac Sci Univ Tokyo Sect IA Math 29:401–441

    MathSciNet  MATH  Google Scholar 

  • Pilyugin SY (1999) Shadowing in dynamical systems. Lecture notes in mathematics, vol 1706. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Raquepas JB, Dockery JD (1999) Dynamics of a reaction-diffusion equation with nonlocal inhibition. Phys D 134:94–110

    Article  MathSciNet  MATH  Google Scholar 

  • Robinson JC (2001) Infinite-dimensional dynamical systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rosa R (2003) Finite dimensional feedback control via inertial manifold theory with application to the Chafee–Infante equation. J Dynam Differential Equations 15:61–86

    Article  MathSciNet  MATH  Google Scholar 

  • Sell GR, You Y (2002) Dynamics of evolutionary equations. Applied mathematical sciences, vol 143. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wang B (2011) Almost periodic dynamics of perturbed infinite-dimensional dynamical systems. Nonlinear Anal 74:7252–7260

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Carvalho, A.N., Langa, J.A., Robinson, J.C. (2013). A non-autonomous Chafee–Infante equation. In: Attractors for infinite-dimensional non-autonomous dynamical systems. Applied Mathematical Sciences, vol 182. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4581-4_13

Download citation

Publish with us

Policies and ethics