Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 182))

Abstract

The global attractor, whose well established definition we recall below, is an object that captures the asymptotic behaviour of autonomous systems. The aim of this chapter is to introduce the ‘pullback attractor’, which seems to be the correct generalisation of this concept for use with non-autonomous processes. We pay particular attention to how this non-autonomous definition relates to the autonomous one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The global attractor is the minimal compact set that attracts every bounded subset of the phase space, see Definition 1.5 and Lemma 1.6. While this definition is indeed ‘well established’, there are many possible definitions of ‘an attractor’, and it is probably not the case that there is one canonical definition (see Milnor 1985, for example).

References

  • Babin AV, Vishik MI (1992) Attractors of evolution equations. North Holland, Amsterdam

    MATH  Google Scholar 

  • Billotti JE, LaSalle JP (1971) Dissipative periodic processes. Bull Am Math Soc 77:1082–1088

    Article  MathSciNet  MATH  Google Scholar 

  • Caraballo T, Langa JA (2003) On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems. Dyn Contin Discrete Impuls Syst Ser A Math Anal 10:491–513

    MathSciNet  MATH  Google Scholar 

  • Caraballo T, Kloeden PE, Real J (2004) Pullback and forward attractors for a damped wave equation with delays. Stoch Dyn 4:405–423

    Article  MathSciNet  MATH  Google Scholar 

  • Carvalho AN, Langa JA, Robinson JC, Suárez A (2007) Characterization of non-autonomous attractors of a perturbed gradient system. J Differential Equations 236:570–603

    Article  MathSciNet  MATH  Google Scholar 

  • Chepyzhov VV, Vishik MI (1994) Attractors of nonautonomous dynamical systems and their dimension. J Math Pures Appl 73:279–333

    MathSciNet  MATH  Google Scholar 

  • Crauel H (2001) Random point attractors versus random set attractors. J Lond Math Soc 63: 413–427

    Google Scholar 

  • Crauel H (2002b) A uniformly exponential random forward attractor which is not a pullback attractor. Arch Math (Basel) 78:329–336

    Article  MathSciNet  MATH  Google Scholar 

  • Crauel H, Flandoli F (1994) Attractors for random dynamical systems. Probab Theory Related Fields 100:365–393

    Article  MathSciNet  MATH  Google Scholar 

  • Crauel H, Debussche A, Flandoli F (1997) Random attractors. J Dynam Differential Equations 9:397–341

    Article  MathSciNet  Google Scholar 

  • Dafermos CM (1974) Semiflows associated with compact and uniform processes. Math Systems Theory 8:142–149

    Article  MathSciNet  Google Scholar 

  • Hale JK (1988) Asymptotic behavior of dissipative systems. Mathematical surveys and monographs, American Mathematival Society, Providence, RI

    MATH  Google Scholar 

  • Kloeden PE (2000a) Pullback attractors in nonautonomous difference equations. J Difference Equ Appl 6:33–52

    Article  MathSciNet  MATH  Google Scholar 

  • Kloeden PE (2000c) A Lyapunov function for pullback attractors of nonautonmous differential equations. Electron J Differential Equations 05:91–102

    MathSciNet  Google Scholar 

  • Kloeden PE (2003) Pullback attractors of nonautonomous semidynamical systems. Stoch Dyn 3:101–112

    Article  MathSciNet  MATH  Google Scholar 

  • Kloeden PE, Rasmussen M (2011) Nonautonomous dynamical systems. Mathematical surveys and monographs. American Mathematical Society, Providence, RI

    MATH  Google Scholar 

  • Kloeden PE, Stonier D (1998) Cocyle attractors of nonautonomously perturbed differential equations. Dynam Contin Discrete Impuls Systems 4:221–226

    MathSciNet  Google Scholar 

  • Ladyzhenskaya OA (1991) Attractors for semigroups and evolution equations. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Langa JA, Robinson JC, Suárez A (2002) Stability, instability, and bifurcation phenomena in non-autonomous differential equations. Nonlinearity 15:887–903

    Article  MathSciNet  MATH  Google Scholar 

  • Langa JA, Robinson JC, Suárez A (2003) Forwards and pullback behaviour of a non-autonomous Lotka–Volterra system. Nonlinearity 16:1277–1293

    Article  MathSciNet  MATH  Google Scholar 

  • Langa JA, Lukaszewicz G, Real J (2007a) Finite fractal dimension of pullback attractors for non-autonomous 2D Navier–Stokes equations in some unbounded domains. Nonlinear Anal 66:735–749

    Article  MathSciNet  MATH  Google Scholar 

  • Milnor J (1985) On the concept of attractor. Comm Math Phys 99:177–195

    Article  MathSciNet  MATH  Google Scholar 

  • Rasmussen M (2006) Towards a bifurcation theory for nonautonomous difference equations. J Difference Equ Appl 12:297–312

    Google Scholar 

  • Sell GR (1967) Nonautonomous differential equations and dynamical systems. Trans Amer Math Soc 127:241–283

    MathSciNet  MATH  Google Scholar 

  • Temam R (1988) Infinite-dimensional dynamical systems in mechanics and physics. Springer, Berlin Heidelberg New York

    Book  MATH  Google Scholar 

  • Vishik MI (1992) Asymptotic behaviour of solutions of evolutionary equations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Carvalho, A.N., Langa, J.A., Robinson, J.C. (2013). The pullback attractor. In: Attractors for infinite-dimensional non-autonomous dynamical systems. Applied Mathematical Sciences, vol 182. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4581-4_1

Download citation

Publish with us

Policies and ethics