Skip to main content

Probability Constrained Optimization

  • Chapter
  • First Online:
Cognitive Networked Sensing and Big Data
  • 2279 Accesses

Abstract

In this chapter, we make the connection between concentration of measure and probability constrained optimization. It is the use of concentration inequality that makes the problem of probability constrained optimization mathematically tractable. Concentration inequalities are the enabling techniques that make possible probability constrained optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We say that, X and Y are identically distributed, or similar, or that Y is a copy of X, if \(\mathbb{P}_{X}\left(A\right) = \mathbb{P}_{Y}\left(A\right),\) where \(\mathbb{P}_{X}\left(A\right) = \mathbb{P}_{X}\left(X \in A\right)\) is a probability measure. A random element X in a measurable vector space is called symmetric, if X and − X are identically distributed. If X is a symmetric random element, then its distribution is a symmetric measure.

Bibliography

  1. M. Ledoux and M. Talagrand, Probability in Banach spaces. Springer, 1991.

    Google Scholar 

  2. A. Buchholz, “Operator khintchine inequality in non-commutative probability,” Mathematische Annalen, vol. 319, no. 1, pp. 1–16, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. So, “Moment inequalities for sums of random matrices and their applications in optimization,” Mathematical programming, vol. 130, no. 1, pp. 125–151, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  4. I. Bechar, “A bernstein-type inequality for stochastic processes of quadratic forms of gaussian variables,” arXiv preprint arXiv:0909.3595, 2009.

    Google Scholar 

  5. K. Wang, A. So, T. Chang, W. Ma, and C. Chi, “Outage constrained robust transmit optimization for multiuser miso downlinks: Tractable approximations by conic optimization,” arXiv preprint arXiv:1108.0982, 2011.

    Google Scholar 

  6. M. Grant and S. Boyd, “Cvx: Matlab software for disciplined convex programming, version 1.21.” http://cvxr.com/cvx, 2010.

  7. A. Nemirovski, “On tractable approximations of randomly perturbed convex constraints,” in Decision and Control, 2003. Proceedings. 42nd IEEE Conference on, vol. 3, pp. 2419–2422, IEEE, 2003.

    Google Scholar 

  8. A. Nemirovski, “Regular banach spaces and large deviations of random sums,” Paper in progress, E-print: http://www2.isye.gatech.edu/nemirovs, 2004.

  9. D. De Farias and B. Van Roy, “On constraint sampling in the linear programming approach to approximate dynamic programming,” Mathematics of operations research, vol. 29, no. 3, pp. 462–478, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Campi and S. Garatti, “The exact feasibility of randomized solutions of uncertain convex programs,” SIAM Journal on Optimization, vol. 19, no. 3, pp. 1211–1230, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Nemirovski and A. Shapiro, “Convex approximations of chance constrained programs,” SIAM Journal on Optimization, vol. 17, no. 4, pp. 969–996, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Nemirovski, “Sums of random symmetric matrices and quadratic optimization under orthogonality constraints,” Mathematical programming, vol. 109, no. 2, pp. 283–317, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Janson, “Large deviations for sums of partly dependent random variables,” Random Structures & Algorithms, vol. 24, no. 3, pp. 234–248, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Cheung, A. So, and K. Wang, “Chance-constrained linear matrix inequalities with dependent perturbations: A safe tractable approximation approach,” Preprint, 2011.

    Google Scholar 

  15. A. Ben-Tal and A. Nemirovski, “On safe tractable approximations of chance-constrained linear matrix inequalities,” Mathematics of Operations Research, vol. 34, no. 1, pp. 1–25, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Gershman, N. Sidiropoulos, S. Shahbazpanahi, M. Bengtsson, and B. Ottersten, “Convex optimization-based beamforming,” Signal Processing Magazine, IEEE, vol. 27, no. 3, pp. 62–75, 2010.

    Article  Google Scholar 

  17. Z. Luo, W. Ma, A. So, Y. Ye, and S. Zhang, “Semidefinite relaxation of quadratic optimization problems,” Signal Processing Magazine, IEEE, vol. 27, no. 3, pp. 20–34, 2010.

    Article  Google Scholar 

  18. E. Karipidis, N. Sidiropoulos, and Z. Luo, “Quality of service and max-min fair transmit beamforming to multiple cochannel multicast groups,” Signal Processing, IEEE Transactions on, vol. 56, no. 3, pp. 1268–1279, 2008.

    Article  MathSciNet  Google Scholar 

  19. Z. Hu, R. Qiu, and J. P. Browning, “Joint Amplify-and-Forward Relay and Cooperative Jamming with Probabilistic Security Consideration,” 2013. submitted to IEEE COMMUNICATIONS LETTERS.

    Google Scholar 

  20. H.-M. Wang, M. Luo, X.-G. Xia, and Q. Yin, “Joint cooperative beamforming and jamming to secure af relay systems with individual power constraint and no eavesdropper’s csi,” Signal Processing Letters, IEEE, vol. 20, no. 1, pp. 39–42, 2013.

    Article  Google Scholar 

  21. Y. Yang, Q. Li, W.-K. Ma, J. Ge, and P. Ching, “Cooperative secure beamforming for af relay networks with multiple eavesdroppers,” Signal Processing Letters, IEEE, vol. 20, no. 1, pp. 35–38, 2013.

    Article  Google Scholar 

  22. D. Ponukumati, F. Gao, and C. Xing, “Robust peer-to-peer relay beamforming: A probabilistic approach,” 2013.

    Google Scholar 

  23. S. Kandukuri and S. Boyd, “Optimal power control in interference-limited fading wireless channels with outage-probability specifications,” Wireless Communications, IEEE Transactions on, vol. 1, no. 1, pp. 46–55, 2002.

    Article  Google Scholar 

  24. S. Ma and D. Sun, “Chance constrained robust beamforming in cognitive radio networks,” 2013.

    Google Scholar 

  25. D. Zhang, Y. Hu, J. Ye, X. Li, and X. He, “Matrix completion by truncated nuclear norm regularization,” in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 2192–2199, IEEE, 2012.

    Google Scholar 

  26. K.-Y. Wang, T.-H. Chang, W.-K. Ma, A.-C. So, and C.-Y. Chi, “Probabilistic sinr constrained robust transmit beamforming: A bernstein-type inequality based conservative approach,” in Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on, pp. 3080–3083, IEEE, 2011.

    Google Scholar 

  27. K.-Y. Wang, T.-H. Chang, W.-K. Ma, and C.-Y. Chi, “A semidefinite relaxation based conservative approach to robust transmit beamforming with probabilistic sinr constraints,” in Proc. EUSIPCO, pp. 23–27, 2010.

    Google Scholar 

  28. K. Yang, J. Huang, Y. Wu, X. Wang, and M. Chiang, “Distributed robust optimization (dro) part i: Framework and example,” 2008.

    Google Scholar 

  29. K. Yang, Y. Wu, J. Huang, X. Wang, and S. Verdú, “Distributed robust optimization for communication networks,” in INFOCOM 2008. The 27th Conference on Computer Communications. IEEE, pp. 1157–1165, IEEE, 2008.

    Google Scholar 

  30. M. Chen and M. Chiang, “Distributed optimization in networking: Recent advances in combinatorial and robust formulations,” Modeling and Optimization: Theory and Applications, pp. 25–52, 2012.

    Google Scholar 

  31. G. Calafiore, F. Dabbene, and R. Tempo, “Randomized algorithms in robust control,” in Decision and Control, 2003. Proceedings. 42nd IEEE Conference on, vol. 2, pp. 1908–1913, IEEE, 2003.

    Google Scholar 

  32. Z. Zhou and R. Cogill, “An algorithm for state constrained stochastic linear-quadratic control,” in American Control Conference (ACC), 2011, pp. 1476–1481, IEEE, 2011.

    Google Scholar 

  33. A. M.-C. So and Y. J. A. Zhang, “Distributionally robust slow adaptive ofdma with soft qos via linear programming,” in IEEE J. Sel. Areas Commun.[Online]. Available: http://www1.se.cuhk.edu.hk/~manchoso.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Qiu, R., Wicks, M. (2014). Probability Constrained Optimization. In: Cognitive Networked Sensing and Big Data. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4544-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4544-9_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4543-2

  • Online ISBN: 978-1-4614-4544-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics