Skip to main content

Bistatic Synthetic Aperture Radar

  • Chapter
  • First Online:
Distributed Space Missions for Earth System Monitoring

Part of the book series: Space Technology Library ((SPTL,volume 31))

Abstract

Bistatic Synthetic Aperture Radar represents an active research and development area in radar technology. In addition, Bistatic and Multistatic SAR concepts are tightly related to formation flying and distributed space missions that also represent the new space-based remote sensing and surveillance frontiers. This chapter introduces Bistatic SAR, in particular by comparing its peculiarities, operation and performance with respect to conventional monostatic SAR. Some basic concepts of bistatic SAR image formation and the main elements of bistatic SAR geometry are preliminary presented. Performance parameters are then analyzed, including geometric resolution, radiometric resolution and bistatic radar equation. Special emphasis is placed on analytical methods to evaluate the effects of bistatic SAR geometry on image resolution. Further implementation issues, such as footprint, time and phase synchronization are also pointed out. The analysis of past bistatic radar and bistatic SAR experiments and proposed spaceborne bistatic SAR missions supplies essential information to understand how these issues have been faced and can be potentially solved in ongoing and future operational systems. Finally, several scientific applications of bistatic SAR are outlined taking advantages of different techniques and methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Willis NJ (1990) Bistatic radar. In: Skolnik MJ (ed) Radar handbook. McGraw-Hill, New York

    Google Scholar 

  2. Howland PE, Griffiths HD, Baker CJ (2008) Passive bistatic radar systems. In: Cherniakov M (ed) Bistatic radar: emerging technology. Wiley, Chichester

    Google Scholar 

  3. Wiley CA (1985) Synthetic aperture radar, a paradigm for technology evolution. IEEE Trans Aerosp Electron Syst 21:440–443

    Article  Google Scholar 

  4. Moccia A (2010) Synthetic aperture radar. In: Blockley R, Shyy W (eds) Encyclopedia of aerospace engineering. Wiley, Chichester

    Google Scholar 

  5. Ulaby FT, Moore RK, Fung AK (1982) Microwave remote sensing: active and passive. In: Radar remote sensing and surface scattering and emission theory, vol II. Addison-Wesley, Advanced Book Program, Reading, MA

    Google Scholar 

  6. Curlander JC, McDonough RN (1991) Synthetic aperture radar systems & signal processing. Wiley, Wiley Series in Remote Sensing, New York

    MATH  Google Scholar 

  7. Hobish MK (2001) Satellite formation flying. In: NPOESS remote sensing tutorial, NASA. http://rst.gsfc.nasa.gov/. Latest access on 13th Jan 2012

  8. Moccia A (2008) Fundamentals of bistatic synthetic aperture radar. In: Cherniakov M (ed) Bistatic radar: emerging technology. Wiley, Chichester

    Google Scholar 

  9. Krieger G, Moreira A et al (2007) TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE Trans Geosci Remote Sens 45(11):3317–3341

    Article  Google Scholar 

  10. Krieger G, Hajnsek I et al (2010) Interferometric synthetic aperture radar (SAR) missions employing formation flying. Proc IEEE 98(5):816–843

    Article  Google Scholar 

  11. Barber BC (1985) Theory of digital imaging from orbital synthetic aperture radar. Int J Remote Sens 6(7):1009–1057

    Article  Google Scholar 

  12. Moccia A, Chiacchio N, Capone A (2000) Spaceborne bistatic synthetic aperture radar for remote sensing applications. Int J Remote Sens 21(18):3395–3414

    Article  Google Scholar 

  13. Krieger G, Moreira A (2006) Spaceborne bi- and multistatic SAR: potential and challenges. IEE Proc Inst Electr Eng-Radar Sonar Navig 153(3):184–198

    Article  Google Scholar 

  14. Zebker H, Villasenor J (1992) Decorrelation in interferometric radar echoes. IEEE Trans Geosci Remote Sens 30(5):950–959

    Article  Google Scholar 

  15. Rodriguez E, Martin JM (1992) Theory and design of interferometric synthetic aperture radars. IEE Proc F 139(2):147–159

    Google Scholar 

  16. Moccia A, Fasano G (2005) Analysis of spaceborne tandem configurations for complementing COSMO with SAR interferometry. EURASIP J Appl Signal Process 20:3304–3315

    Google Scholar 

  17. GESS Science Definition Team (2003) GESS: Global earthquake satellite systems. A 20-year plan to enable earthquake prediction. NASA JPL, California Institute of Technology, Pasadena, CA 400–1069

    Google Scholar 

  18. Moccia A, Renga A (2010) Synthetic aperture radar for earth observation from a lunar base: performance and potential applications. IEEE Trans Aerosp Electron Syst 46(3):1034–1051

    Article  Google Scholar 

  19. Moccia A, Rufino G (2001) Spaceborne along-track SAR interferometry performance analysis and mission scenarios. IEEE Trans Aerosp Electron Syst 37(1):199–213

    Article  Google Scholar 

  20. Renga A, Moccia A, D’Errico M et al (2008) From the expected scientific applications to the functional specifications, products and performance of the SABRINA mission. In: Proceedings of the IEEE radar conference, Rome, Italy, doi:10.1109/RADAR.2008.4720935

    Google Scholar 

  21. Cardillo GP (1990) On the use of gradient to determine bistatic SAR resolution. Proc Antennas Propag Soc Int Symp 2:1032–1035

    Google Scholar 

  22. Moccia A, Renga A (2011) Spatial resolution of bistatic synthetic aperture radar: impact of acquisition geometry on imaging performance. IEEE Trans Geosci Remote Sens 49(10):3487–3503

    Article  Google Scholar 

  23. Zeng T, Cherniakov M, Long T (2005) Generalized approach to resolution analysis in BSAR. IEEE Trans Aerosp Electron Syst 41(4):461–474

    Article  Google Scholar 

  24. Gierull C (2004) Bistatic synthetic aperture radar. Defence R&D Canada, Ottawa, Technical report DRDC-OTTAWA-TR-2004-190

    Google Scholar 

  25. Walterscheid I, Espeter T, Klare J, Brenner A (2010) Bistatic spaceborne–airborne forward-looking SAR. In: Proceedings of the 8th European conference on synthetic aperture radar, Aachen, Germany, pp 986–989

    Google Scholar 

  26. D’Errico M, Moccia A, Renga A et al (2009) Satellite-unmanned airborne systems cooperative approaches for the improvement of all-weather day and night operations. ESA contract 22449/09/F/MOS, Final report, Second University of Naples, Aversa, Italy

    Google Scholar 

  27. Keydel W (1992) Basic principles of SAR. In: Fundamentals & special problems of synthetic aperture radar, Advisory Group for Aerospace Research & Development, Neuilly-sur-Seine, France, AGARD-LS-182

    Google Scholar 

  28. Cherniakov M, Zeng T (2008) Passive bistatic SAR with GNSS transmitters. In: Cherniakov M (ed) Bistatic radar: emerging technology. Wiley, Chichester

    Chapter  Google Scholar 

  29. Walterscheid I, Klare J, Brenner AR, Ender JHG, Loffeld O (2006) Challenges of a bistatic spaceborne/airborne SAR experiment. In: Proceedings of the 6th European conference on synthetic aperture radar, Dresden

    Google Scholar 

  30. Willis NJ (1991) Bistatic radar. Artech House, Boston

    Google Scholar 

  31. Moccia A, D’Errico M (2008) Bistatic SAR for earth observation. In: Cherniakov M (ed) Bistatic radar: emerging technology. Wiley, Chichester

    Google Scholar 

  32. Cazzani L, Colesanti C, Leva D, Nesti G, Prati C, Rocca F, Tarchi D (2000) A ground-based parasitic SAR experiment. IEEE Trans Geosci Remote Sens 38(5):2132–2141

    Article  Google Scholar 

  33. Krieger G, Yuonis M (2006) Impact of oscillator noise in bistatic and multistatic SAR. IEEE Geosci Remote Sens Lett 3(3):424–428

    Article  Google Scholar 

  34. Rodriguez-Cassola M, Baumgartner SV, Krieger G, Moreira A (2010) Bistatic TerraSAR-X/F-SAR spaceborne–airborne SAR experiment: description, data processing, and results. IEEE Trans Geosci Remote Sens 48(2):781–794

    Article  Google Scholar 

  35. Doviak RJ, Goldhirsh J, Miller AR (1972) Bistatic radar detection of high altitude clear air atmospheric targets. Radio Sci 7:993–1003

    Article  Google Scholar 

  36. Peterson AM, Teague CC, Tyler GL (1970) Bistatic-radar observation of long-period, directional ocean-wave spectra with Loran A. Science 170:158–161

    Article  Google Scholar 

  37. Atlas D, Naito K (1968) Carbone RE Bistatic microwave probing of a refractively perturbed clear atmosphere. J Atmos Sci 25:257–268

    Google Scholar 

  38. Rogers PJ, Eccles PJ (1971) The bistatic radar equation for randomly distributed targets. Proc IEEE 59(6):1019–1021

    Article  Google Scholar 

  39. Wurman J, Heckman S, Boccippio D (1993) A bistatic multiple-Doppler network. J Appl Meteorol 32:1802–1814

    Article  Google Scholar 

  40. Pavelyev AG, Volkov AV, Zakharov AI, Krutikh SA, Kucherjavenkov AI (1996) Bistatic radar as a tool for earth investigation using small satellites. Acta Astronaut 39(9–12):721–730

    Article  Google Scholar 

  41. Parker MN, Tyler GL (1973) Bistatic-radar estimation of surface-slope probability distributions with applications to the moon. Radio Sci 8(3):177–184

    Article  Google Scholar 

  42. Simpson RA, Tyler GL (1982) Radar scattering laws for the lunar surface. IEEE Trans Antennas Propag 30(3):438–449

    Article  Google Scholar 

  43. Simpson RA (1993) Spacecraft studies of planetary surfaces using bistatic radar. IEEE Trans Geosci Remote Sens 31(2):465–482

    Article  Google Scholar 

  44. Tyler GL, Howard HT (1973) Dual-frequency bistatic-radar investigations of the Moon with Apollos 14 and 15. J Geophys Res 78(23):4852–4874

    Article  Google Scholar 

  45. Tang CH, Boak TIS, Grossi MD (1977) Bistatic radar measurement of electrical properties of the Martian surface. J Geophys Res 82:4305–4315

    Article  Google Scholar 

  46. Fung AK, Zuffada C, Hsieh CY (2001) Incoherent bistatic scattering from the sea surface at L-band. IEEE Trans Geosci Remote Sens 39(5):1006–1012

    Article  Google Scholar 

  47. Zavorotny VU, Voronovich AG (2000) Scattering of GPS signals from the ocean with wind remote sensing applications. IEEE Trans Geosci Remote Sens 38(2):951–964

    Article  Google Scholar 

  48. Martín-Neira M, Caparrini M, Font-Rossello J, Lannelongue S, Serra Vallmitjana C (2001) The PARIS concept, an experimental demonstration of sea surface altimetry using GPS reflected signals. IEEE Trans Geosci Remote Sens 39(1):142–150

    Article  Google Scholar 

  49. Zahn D, Sarabandi K (2000) Simulation of bistatic scattering for assessing the application of existing communication satellites to remote sensing of rough surfaces. Proc IGARSS 4:1528–1530

    Google Scholar 

  50. Zavorotny VU, Voronovich AG (2000) Bistatic GPS signal reflections at various polarizations from rough land surface with moisture content. Proc IGARSS 7:2852–2854

    Google Scholar 

  51. Zavorotny VU, Voronovich AG, Katzberg SJ, Garrison JL, Komjathy A (2000) Extraction of sea state and wind speed from reflected GPS signals: modeling and aircraft measurements. Proc IGARSS 4:1507–1509

    Google Scholar 

  52. Lowe ST, LaBrecque JL, Zuffada C, Romans LJ, Young LE, Hajj GA (2002) First spaceborne observation of an earth-reflected GPS signal. Radio Sci. doi:10.1029/2000RS002539

  53. Gleason S, Hodgart S, Sun Y, Gommenginger C, Mackin S, Adjrad M, Unwin M (2005) Detection and processing of bistatically reflected GPS signals from low earth orbit for the purpose of ocean remote sensing. IEEE Trans Geosci Remote Sens 43(6):1229–1241

    Article  Google Scholar 

  54. Martín-Neira M, D’Addio S, Buck C, Floury N, Prieto-Cerdeira R (2011) The PARIS ocean altimeter in-orbit demonstrator. IEEE Trans Geosci Remote Sens 49(6):2209–2237

    Article  Google Scholar 

  55. Teague CC, Tyler GL, Joy JW, Stewart RH (1973) Synthetic aperture observations of directional height spectra for 7 s ocean waves. Nat Phys Sci 244:98–100

    Google Scholar 

  56. Teague CC, Tyler GL, Stewart RH (1977) Studies of the sea using HF radio scatter. IEEE J Oceanic Eng OE-2(1):12–19

    Article  Google Scholar 

  57. Auterman JL (1984) Phase stability requirements for a bistatic SAR. In: Proceedings of the IEEE national radar conference, Atlanta, pp 48–52

    Google Scholar 

  58. http://trs-new.jpl.nasa.gov/dspace/handle/2014/33128. Latest access on 13th Jan 2012

  59. Martinsek D, Goldstein R (1998) Bistatic radar experiment, In: Proceedings of the European conference on synthetic aperture radar, Berlin

    Google Scholar 

  60. Balke F (2005) Field test of bistatic forward-looking synthetic aperture radar. In: Proceedings of IEEE radar conference, Washington, DC, pp 423–429

    Google Scholar 

  61. Gierull C (2006) Mitigation of phase noise in bistatic SAR systems with extremely large synthetic aperture. In: Proceedings of the 6th European conference on synthetic aperture radar, Dresden

    Google Scholar 

  62. Yates G, Horne AM, Blake AP, Middleton R (2006) Bistatic SAR image formation. IEE Proc Radar Sonar Navig 153(3):208–213

    Article  Google Scholar 

  63. Dubois-Fernandez P, Cantalloube H, Vaizan B, Krieger G, Horn R, Wendler M, Giroux V (2006) ONERA-DLR bistatic SAR campaign: planning, data acquisition, and first analysis of bistatic scattering behaviour of natural and urban targets. IEE Proc Radar Sonar Navig 153(3):214–223

    Article  Google Scholar 

  64. Walterscheid I, Brenner AR, Ender J (2004) Geometry and system aspects for a bistatic airborne SAR-experiment. In: Proceedings of the 5th European conference on synthetic aperture radar, Ulm, pp 567–570

    Google Scholar 

  65. Sanz-Marcos J, Mallorqui JJ, Aguasca A (2005) First steps towards single-pass interferometry based on a bistatic fixed receiver SAR system. In: Proceedings of the FRINGE, Frascati, Italy

    Google Scholar 

  66. Antoniou M, Saini R, Cherniakov M (2007) Results of a space-surface bistatic SAR image formation algorithm. IEEE Trans Geosci Remote Sens 45(11):3359–3371

    Article  Google Scholar 

  67. Griffiths HD, Baker CJ, Baubert J, Kitchen N, Treagust M (2002) Bistatic radar using spaceborne illuminators. In: Proceedings of the IEE International Conference (RADAR 2002), Edinburgh, UK, pp 1–5

    Google Scholar 

  68. Griffiths HD (2008) New directions in bistatic radar. IEEE radar conference, Rome, Italy, pp 1–6

    Google Scholar 

  69. Walterscheid I, Espeter T, Brenner AR, Klare J, Ender JHG, Nies H, Wang R, Loffeld O (2010) Bistatic SAR experiments with PAMIR and TerraSAR-X – setup, processing, and image results. IEEE Trans Geosci Remote Sens 48(8):3268–3278

    Article  Google Scholar 

  70. www.nasa.gov/mission_pages/Mini-RF/news/tandem_search.html. Latest access on 13th Jan 2012

  71. Nozette S, Spudis P, Bussey B et al (2010) The lunar reconnaissance orbiter miniature radio frequency (Mini-RF) technology demonstration. Space Sci Rev 150:285–302

    Article  Google Scholar 

  72. www.nasa.gov/offices/oce/appel/ask-academy/issues/volume3/AA_3-7_F_outside.html. Latest access on 13th Jan 2012

  73. Hsu YS, Lorti DC (1986) Spaceborne bistatic radar – an overview. IEE Proc 133(F7):642–648

    Google Scholar 

  74. Chen P, Beard JK (2000) Bistatic GMTI experiment for airborne platforms. In: The record of the IEEE international radar conference, Alexandria, VA, pp 42–46

    Google Scholar 

  75. Moore KL, Richards CL, Chen P (2003) Bistatic radar system using transmitters in mid-earth orbit. US Patent 6614386

    Google Scholar 

  76. Ogrodnik RF, Wolf WE, Schneible R, McNamara J, Clancy J, Tomlinson PG (1997) Bistatic variants of space-based radar. In: Proceedings of the IEEE aerospace conference, Snowmass at Aspen, Co, vol 2, pp 159–169

    Google Scholar 

  77. Guttrich GL, Sievers WE, Tomljanovich NM (1997) Wide area surveillance concepts based on geosynchronous illumination and bistatic unmanned airborne vehicles or satellite reception. In: Proceedings of the IEEE national radar conference, Syracuse, pp 126–131

    Google Scholar 

  78. Hartnett MP, Davis ME (2003) Operations of an airborne bistatic adjunct to space based radar. In: Proceedings of the IEEE radar conference, Huntsville, Alabama, USA, pp 133–138

    Google Scholar 

  79. Cherniakov M, Kubik K, Nezlin D (2000) Bistatic synthetic aperture radar with non-cooperative LEOS based transmitter. Proc IGARSS 2:861–862

    Google Scholar 

  80. Martín-Neira M, Mavrocordatos C, Colzi E (1998) Study of a constellation of bistatic radar altimeters for mesoscale ocean applications. IEEE Trans Geosci Remote Sens 36(6):1898–1904

    Article  Google Scholar 

  81. Picardi G, Seu R, Sorge SG, Martin-Neira M (1998) Bistatic model of ocean scattering. IEEE Trans Antennas Propag 46(10):1531–1541

    Article  Google Scholar 

  82. Alberti G, Zelli C (1999) Design of bistatic altimetric mission for oceanographic applications. Space Technol 19(2):83–96

    Google Scholar 

  83. Moccia A, Rufino G, D’Errico M et al. (2001) BISSAT: a bistatic SAR for earth observation. Phase A study – final report, ASI research contract I/R/213/00, University of Naples, Naples, Italy

    Google Scholar 

  84. Massonet D (2001) Capabilities and limitations of the interferometric cartwheel. IEEE Trans Geosci Remote Sens 39(3):506–520

    Article  Google Scholar 

  85. Caves R, Luscombe AP, Lee PF, James K (2002) Topographic performance evaluation of the RADARSAT-2/3 tandem mission. Proc IGARSS 2:961–963

    Google Scholar 

  86. Hauck B, Ulaby F, DeRoo FR (1998) Polarimetric bistatic measurement facility for point and distributed targets. IEEE Antennas Propag Mag 40:31–41

    Article  Google Scholar 

  87. Airiau O, Khenchaf A (2000) A methodology for modeling and simulating target echoes with a moving polarimetric bistatic radar. Radio Sci 35(3):773–782

    Article  Google Scholar 

  88. Moccia A, Rufino G, De Luca M (2003) Oceanographic applications of spaceborne bistatic SAR. In: Proceedings of the IGARSS, Toulouse

    Google Scholar 

  89. Ulaby FT, Moore RK, Fung AK (1986) Microwave remote sensing: active and passive – vol. III: from theory to applications. Artech House, Norwood, MA

    Google Scholar 

  90. Alpers W, Ross D, Rufenach C (1981) On the detectability of ocean surface waves by real and synthetic aperture radar. J Geophys Res 86(C7):6481–6498

    Article  Google Scholar 

  91. Hasselmann K, Raney RK, Plant WJ, Alpers W, Shuchman RA, Lyzenga DR, Rufenach CL, Tucker MJ (1985) Theory of synthetic aperture radar ocean imaging: a MARSEN view. J Geophys Res 90(C3):4659–4686

    Article  Google Scholar 

  92. Alpers W, Rufenach C (1979) The effect of orbital motions on synthetic aperture radar imagery of ocean waves. IEEE Trans Antenn Propag AP-27(5):685–690

    Article  Google Scholar 

  93. Hasselmann K, Hasselmann S (1991) On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion. J Geophys Res 96(C6):10713–10729

    Article  Google Scholar 

  94. Goldstein RM, Zebker HA (1987) Interferometric radar measurement of ocean surface currents. Nature 328(6132):707–709

    Article  Google Scholar 

  95. Romeiser R, Runge H (2007) Theoretical evaluation of several possible along-track InSAR modes of TerraSAR-X for ocean current measurements. IEEE Trans Geosci Remote Sens 45(1):21–35

    Article  Google Scholar 

  96. Rosen PA, Hensley S, Joughin IR, Li FK, Madsen SN, Rodriguez E, Goldstein RM (2000) Synthetic aperture radar interferometry. Proc IEEE 88(3):333–382

    Article  Google Scholar 

  97. Li FK, Goldstein RM (1990) Studies of multibaseline spaceborne interferometric synthetic aperture radars. IEEE Trans Geosci Remote Sens 28(1):88–97

    Article  Google Scholar 

  98. Massonnet D (2001) The interferometric cartwheel: a constellation of passive satellites to produce radar images to be coherently combined. Int J Remote Sens 22(12):2413–2430

    Article  Google Scholar 

  99. Reigber A, Moreira A (2000) First demonstration of SAR tomography using multibaseline L-band data. IEEE Trans Geosci Remote Sens 38(5):2142–2152

    Article  Google Scholar 

  100. Fornaro G, Serafino F (2006) Imaging of single and double scatterers in urban areas via SAR tomography. IEEE Trans Geosci Remote Sens 44(12):3497–3505

    Article  Google Scholar 

  101. Prati C, Rocca F (1993) Improving slant-range resolution with multiple SAR surveys. IEEE Trans Aerosp Electron Syst 29(1):135–144

    Article  Google Scholar 

  102. Khenchaf A (2001) Bistatic scattering and depolarization by randomly rough surfaces: application to the natural rough surfaces in X-band. Waves Random Media 11(2):61–89

    Article  MATH  Google Scholar 

  103. Pierdicca N, Pulvirenti L, Ticconi F et al (2007) Use of bistatic microwave measurements for earth observation. ESA/ESTEC contract 19173/05/NL/GLC, University of Rome, Rome, Italy

    Google Scholar 

  104. Toutin T, Gray AL (2000) State-of-the-art of extraction of elevation data using satellite SAR data. ISPRS J Photogramm Remote Sens 55(1):13–33

    Article  Google Scholar 

  105. Schuler DL, Lee JS, De Grandi G (1996) Measurement of topography using polarimetric SAR images. IEEE Trans Geosci Remote Sens 34(5):1266–1277

    Article  Google Scholar 

  106. Toutin T (2004) Radarsat-2 stereoscopy and polarimetry for 3D mapping. Can J Remote Sens 30(3):496–503

    Article  Google Scholar 

  107. Gelautz M, Paillou P, Chen C, Zebker H (2003) Radar stereo- and interferometry-derived digital elevation models: comparison and combination using Radarsat and ERS-2 imagery. Int J Remote Sens 24(24):5243–5264

    Article  Google Scholar 

  108. Leberl F (1990) Radargrammetric image processing. Artech House, Boston

    Google Scholar 

  109. Toutin T (1999) Error tracking of radargrammetric DEM from RADARSAT images. IEEE Trans Geosci Remote Sens 37(5):2227–2238

    Article  Google Scholar 

  110. Renga A, Moccia A (2009) Performance of stereo radargrammetric methods applied to spaceborne monostatic-bistatic synthetic aperture radar. IEEE Trans Geosci Remote Sens 47(2):544–560

    Article  Google Scholar 

  111. Renga A, Moccia A (2009) Effects of orbit and pointing geometry of a spaceborne formation for monostatic-bistatic radargrammetry on terrain elevation measurement accuracy. Sensors 9:175–195

    Article  Google Scholar 

  112. Rigling D, Moses RL (2005) Three-dimensional surface reconstruction from multistatic SAR images. IEEE Trans Image Process 14:1159–1171

    Google Scholar 

  113. Lillesand TM, Kiefer RW (1979) Remote sensing and image interpretation. Wiley, New York, pp 283–289

    Google Scholar 

  114. Italian Space Agency (2007) COSMO-SkyMed system description & user guide. ASI-CSM-ENG-RS-093-A

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Moccia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moccia, A., Renga, A. (2013). Bistatic Synthetic Aperture Radar. In: D'Errico, M. (eds) Distributed Space Missions for Earth System Monitoring. Space Technology Library, vol 31. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4541-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4541-8_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4540-1

  • Online ISBN: 978-1-4614-4541-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics