Skip to main content

Motor Control of Extraocular Muscle

  • Chapter
  • First Online:
Craniofacial Muscles
  • 1814 Accesses

Abstract

Six pairs of extraocular muscles (EOMs) are innervated by three pairs of cranial nerves whose cell bodies lie in three cranial nerve nuclei on each side of the brain, namely the oculomotor, trochlear, and abducens nuclei. Early studies of the oculomotor system examined neuronal responses of extraocular motoneurons within these motor nuclei and developed a framework for understanding the motor control of EOM (Fuchs and Luschei 1970; Keller and Robinson 1971). Perhaps one of the most significant and elegant outcomes of some of these studies was the proposal for a “final common pathway” for eye movements (Robinson 1968, 1981). Thus, according to the oculomotor final common pathway theory, motoneuron innervation of EOM was independent of the type of eye movement that was being executed. While this framework still has validity in understanding the neural control of eye movements, there have been new developments in the last couple of decades that has brought about renewed interest in the oculomotor periphery and cast doubt on the so-called “final common pathway.” The goals of this chapter are to review ocular biomechanics and motor control of EOM while highlighting new developments and identifying issues that are yet unresolved. We have confined our discussion to the motor neurons and their effector organ, the eye. Central control of eye movements is outside the scope of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term “plant” comes from engineering terminology for something that is controlled.

  2. 2.

    Studies from labs that examined motoneuron responses during combined saccade-vergence movements have shown that many abducens motoneurons and medial rectus motoneurons surprisingly encode a binocular signal (i.e., encode movements of either eye) although they might be expected to only encode movements of the eye that they project to. For the purposes of this chapter, it should be noted that the finding of unequal sensitivities for vergence and conjugate eye movements is exactly equivalent to the finding of binocular encoding in motoneuronal activity by these other studies. The reason that the two findings are equivalent is that a simple linear mathematical transformation can transform a conjugate/vergence representation of motoneuronal responses into a right eye/left eye representation (King and Zhou 2002; Sylvestre and Cullen 2002).

    Conjugate  =  (right eye  +  left eye)/2

    Vergence  =  Left eye  −  right eye

    Right eye  =  Conjugate  −  vergence/2

    Left eye  =  Conjugate  +  vergence/2

References

  • Anderson SR, Porrill J, Sklavos S, Gandhi NJ, Sparks DL, Dean P (2009) Dynamics of primate oculomotor plant revealed by effects of abducens microstimulation. J Neurophysiol 101(6):2907–2923

    Article  PubMed  Google Scholar 

  • Angelaki DE, Hess BJ (2004) Control of eye orientation: where does the brain’s role end and the muscle’s begin? Eur J Neurosci 19(1):1–10

    Article  PubMed  Google Scholar 

  • Brandner M, Buchberger M, Kaltofen T, Haslwanter T, Hoerantner R, Langmann A (2011) Biomechanical analysis of x-pattern exotropia. Am J Ophthalmol 152(1):141–146

    Article  PubMed  Google Scholar 

  • Buttner-Ennever JA (2006) The extraocular motor nuclei: organization and functional neuroanatomy. In: Buttner-Ennever JA (ed) Progress in brain research: neuroanatomy of the oculomotor system. Elsevier, Netherlands, pp 95–125

    Chapter  Google Scholar 

  • Buttner-Ennever JA, Akert K (1981) Medial rectus subgroups of the oculomotor nucleus and their abducens internuclear input in the monkey. J Comp Neurol 197(1):17–27

    Article  PubMed  CAS  Google Scholar 

  • Buttner-Ennever JA, Horn AK, Scherberger H, D’Ascanio P (2001) Motoneurons of twitch and nontwitch extraocular muscle fibers in the abducens, trochlear, and oculomotor nuclei of monkeys. J Comp Neurol 438(3):318–335

    Article  PubMed  CAS  Google Scholar 

  • Chen AL, Ramat S, Serra A, King SA, Leigh RJ (2011) The role of the medial longitudinal fasciculus in horizontal gaze: tests of current hypotheses for saccade-vergence interactions. Exp Brain Res 208(3):335–343

    Article  PubMed  Google Scholar 

  • Clark RA, Miller JM, Demer JL (1997) Location and stability of rectus muscle pulleys. Muscle paths as a function of gaze. Invest Ophthalmol Vis Sci 38(1):227–240

    PubMed  CAS  Google Scholar 

  • Clark RA, Miller JM, Demer JL (1998a) Displacement of the medial rectus pulley in superior oblique palsy. Invest Ophthalmol Vis Sci 39(1):207–212

    PubMed  CAS  Google Scholar 

  • Clark RA, Miller JM, Rosenbaum AL, Demer JL (1998b) Heterotopic muscle pulleys or oblique muscle dysfunction? J AAPOS 2(1):17–25

    Article  PubMed  CAS  Google Scholar 

  • Clark RA, Miller JM, Demer JL (2000) Three-dimensional location of human rectus pulleys by path inflections in secondary gaze positions. Invest Ophthalmol Vis Sci 41(12):3787–3797

    PubMed  CAS  Google Scholar 

  • Clendaniel RA, Mays LE (1994) Characteristics of antidromically identified oculomotor internuclear neurons during vergence and versional eye movements. J Neurophysiol 71(3):1111–1127

    PubMed  CAS  Google Scholar 

  • Collins CC (1971) Orbital mechanics. In: Bach-y-Rita P, Collins CC, Hyde JE (eds) The control of eye movements. Academic, New York, pp 283–325

    Google Scholar 

  • Crawford JD, Vilis T (1992) Symmetry of oculomotor burst neuron coordinates about Listing’s plane. J Neurophysiol 68(2):432–448

    PubMed  CAS  Google Scholar 

  • Crawford JD, Ceylan MZ, Klier EM, Guitton D (1999) Three-dimensional eye-head coordination during gaze saccades in the primate. J Neurophysiol 81(4):1760–1782

    PubMed  CAS  Google Scholar 

  • Cullen KE, Van Horn MR (2011) The neural control of fast vs. slow vergence eye movements. Eur J Neurosci 33(11):2147–2154

    Article  PubMed  Google Scholar 

  • Das VE (2008) Investigating mechanisms of strabismus in nonhuman primates. J AAPOS 12(4):324–325

    Article  PubMed  Google Scholar 

  • Das VE (2011) Cells in the supraoculomotor area in monkeys with strabismus show activity related to strabismus angle. Ann N Y Acad Sci 1233:85–90

    Article  PubMed  Google Scholar 

  • Das VE, Mustari MJ (2007) Correlation of cross-axis eye movements and motoneuron activity in non-human primates with “A” pattern strabismus. Invest Ophthalmol Vis Sci 48(2):665–674

    Article  PubMed  Google Scholar 

  • Delgado-Garcia JM, del Pozo F, Baker R (1986a) Behavior of neurons in the abducens nucleus of the alert cat—I. Motoneurons. Neuroscience 17(4):929–952

    Article  PubMed  CAS  Google Scholar 

  • Delgado-Garcia JM, del Pozo F, Baker R (1986b) Behavior of neurons in the abducens nucleus of the alert cat—II. Internuclear neurons. Neuroscience 17(4):953–973

    Article  PubMed  CAS  Google Scholar 

  • Demer JL (2001) Clarity of words and thoughts about strabismus [letter; comment]. Am J Ophthalmol 132(5):757–759

    Article  PubMed  CAS  Google Scholar 

  • Demer JL (2004) Pivotal role of orbital connective tissue in binocular alignment and strabismus: the Friedenwald lecture. Invest Ophthalmol Vis Sci 45(3):729–738

    Article  PubMed  Google Scholar 

  • Demer JL (2006) Current concepts of mechanical and neural factors in ocular motility. Curr Opin Neurol 19:4  –13

    PubMed  CAS  Google Scholar 

  • Demer JL, Miller JM, Poukens V, Vinters HV, Glasgow BJ (1995) Evidence for fibromuscular pulleys of the recti extraocular muscles. Invest Ophthalmol Vis Sci 36(6):1125–1136

    PubMed  CAS  Google Scholar 

  • Demer JL, Miller JM, Poukens V (1996) Surgical implications of the rectus extraocular muscle pulleys. J Pediatr Ophthalmol Strabismus 33(4):208–218

    PubMed  CAS  Google Scholar 

  • Demer JL, Oh SY, Poukens V (2000) Evidence for active control of rectus extraocular muscle pulleys. Invest Ophthalmol Vis Sci 41(6):1280–1290

    PubMed  CAS  Google Scholar 

  • Demer JL, Kono R, Wright W (2003) Magnetic resonance imaging of human extraocular muscles in convergence. J Neurophysiol 89(4):2072–2085

    Article  PubMed  Google Scholar 

  • Fuchs AF, Luschei ES (1970) Firing patterns of abducens neurons of alert monkeys in relationship to horizontal eye movement. J Neurophysiol 33(3):382–392

    PubMed  CAS  Google Scholar 

  • Fuchs AF, Scudder CA, Kaneko CR (1988) Discharge patterns and recruitment order of identified motoneurons and internuclear neurons in the monkey abducens nucleus. J Neurophysiol 60(6):1874–1895

    PubMed  CAS  Google Scholar 

  • Ghasia FF, Angelaki DE (2005) Do motoneurons encode the noncommutativity of ocular rotations? Neuron 47(2):281–293

    Article  PubMed  CAS  Google Scholar 

  • Goldstein HP (1983) The neural encoding of saccades in the rhesus monkey. Johns Hopkins University, Baltimore, MD

    Google Scholar 

  • Haslwanter T, Buchberger M, Kaltofen T, Hoerantner R, Priglinger S (2005) SEE++: a biomechanical model of the oculomotor plant. Ann N Y Acad Sci 1039:9–14

    Article  PubMed  CAS  Google Scholar 

  • Haustein W (1989) Considerations on Listing’s Law and the primary position by means of a matrix description of eye position control. Biol Cybern 60(6):411–420

    Article  PubMed  CAS  Google Scholar 

  • Hoerantner R, Kaltofen T, Priglinger S, Fock CM, Buchberger M, Haslwanter T (2007) Model-based improvements in the treatment of patients with strabismus and axial high myopia. Invest Ophthalmol Vis Sci 48(3):1133–1138

    Article  PubMed  Google Scholar 

  • Joshi AC, Das VE (2011) Responses of medial rectus motoneurons in monkeys with strabismus. Invest Ophthalmol Vis Sci 52:6697–6705

    Google Scholar 

  • Keller EL (1973) Accommodative vergence in the alert monkey. Motor unit analysis. Vision Res 13(8):1565–1575

    Article  PubMed  CAS  Google Scholar 

  • Keller EL, Robinson DA (1971) Absence of a stretch reflex in extraocular muscles of the monkey. J Neurophysiol 34(5):908–919

    PubMed  CAS  Google Scholar 

  • Keller EL, Robinson DA (1972) Abducens unit behavior in the monkey during vergence movements. Vision Res 12(3):369–382

    Article  PubMed  CAS  Google Scholar 

  • King WM, Zhou W (2000) New ideas about binocular coordination of eye movements: is there a chameleon in the primate family tree? Anat Rec 261(4):153–161

    Article  PubMed  CAS  Google Scholar 

  • King WM, Zhou W (2002) Neural basis of disjunctive eye movements. Ann N Y Acad Sci 956:273–283

    Article  PubMed  CAS  Google Scholar 

  • King WM, Fuchs AF, Magnin M (1981) Vertical eye movement-related responses of neurons in midbrain near intestinal nucleus of Cajal. J Neurophysiol 46(3):549–562

    PubMed  CAS  Google Scholar 

  • Klier EM, Meng H, Angelaki DE (2006) Three-dimensional kinematics at the level of the oculomotor plant. J Neurosci 26(10):2732–2737

    Article  PubMed  CAS  Google Scholar 

  • Klier EM, Meng H, Angelaki DE (2011) Revealing the kinematics of the oculomotor plant with tertiary eye positions and ocular counterroll. J Neurophysiol 105(2):640–649

    Article  PubMed  Google Scholar 

  • Kono R, Clark RA, Demer JL (2002) Active pulleys: magnetic resonance imaging of rectus muscle paths in tertiary gazes. Invest Ophthalmol Vis Sci 43(7):2179–2188

    PubMed  Google Scholar 

  • Koornneef L (1977) New insights in the human orbital connective tissue. Result of a new anatomical approach. Arch Ophthalmol 95(7):1269–1273

    Article  PubMed  CAS  Google Scholar 

  • Langer T, Fuchs AF, Scudder CA, Chubb MC (1985) Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 235(1):1–25

    Article  PubMed  CAS  Google Scholar 

  • Langer T, Kaneko CR, Scudder CA, Fuchs AF (1986) Afferents to the abducens nucleus in the monkey and cat. J Comp Neurol 245(3):379–400

    Article  PubMed  CAS  Google Scholar 

  • Leigh RJ, Zee DS (2006) The neurology of eye movements. Oxford University Press, New York

    Google Scholar 

  • Mays LE (1998) Has Hering been hooked? Nat Med 4(8):889–890

    Article  PubMed  CAS  Google Scholar 

  • Mays LE, Porter JD (1984) Neural control of vergence eye movements: activity of abducens and oculomotor neurons. J Neurophysiol 52(4):743–761

    PubMed  CAS  Google Scholar 

  • Mays LE, Zhang Y, Thorstad MH, Gamlin PD (1991) Trochlear unit activity during ocular convergence. J Neurophysiol 65(6):1484–1491

    PubMed  CAS  Google Scholar 

  • McCrea RA, Strassman A, Highstein SM (1986) Morphology and physiology of abducens motoneurons and internuclear neurons intracellularly injected with horseradish peroxidase in alert squirrel monkeys. J Comp Neurol 243(3):291–308

    Article  PubMed  CAS  Google Scholar 

  • McLoon LK, Wirtschafter J (2003) Activated satellite cells in extraocular muscles of normal adult monkeys and humans. Invest Ophthalmol Vis Sci 44(5):1927–1932

    Article  PubMed  Google Scholar 

  • McLoon LK, Rowe J, Wirtschafter J, McCormick KM (2004) Continuous myofiber remodeling in uninjured extraocular myofibers: myonuclear turnover and evidence for apoptosis. Muscle Nerve 29(5):707–715

    Article  PubMed  Google Scholar 

  • McLoon LK, Park HN, Kim JH, Pedrosa-Domellof F, Thompson LV (2011) A continuum of myofibers in adult rabbit extraocular muscle: force, shortening velocity, and patterns of myosin heavy chain co-localization. J Appl Physiol 111(4):1178–1189

    Article  PubMed  CAS  Google Scholar 

  • Miller JM (1989) Functional anatomy of normal human rectus muscles. Vision Res 29(2):223–240

    Article  PubMed  CAS  Google Scholar 

  • Miller J (2003) No oculomotor plant, no final common path. Strabismus 11(4):205–211

    Article  PubMed  Google Scholar 

  • Miller JM, Robins D (1987) Extraocular muscle sideslip and orbital geometry in monkeys. Vision Res 27(3):381–392

    Article  PubMed  CAS  Google Scholar 

  • Miller JM, Demer JL, Rosenbaum AL (1993) Effect of transposition surgery on rectus muscle paths by magnetic resonance imaging. Ophthalmology 100(4):475–487

    PubMed  CAS  Google Scholar 

  • Miller JM, Bockisch CJ, Pavlovski DS (2002) Missing lateral rectus force and absence of medial rectus co-contraction in ocular convergence. J Neurophysiol 87(5):2421–2433

    PubMed  Google Scholar 

  • Miller JM, Demer JL, Poukens V, Pavlovski DS, Nguyen HN, Rossi EA (2003) Extraocular connective tissue architecture. J Vis 3(3):240–251

    Article  PubMed  Google Scholar 

  • Miller JM, Davison RC, Gamlin PD (2011) Motor nucleus activity fails to predict extraocular muscle forces in ocular convergence. J Neurophysiol 105(6):2863–2873

    Article  PubMed  Google Scholar 

  • Moschovakis AK, Scudder CA, Highstein SM (1990) A structural basis for Hering’s law: projections to extraocular motoneurons. Science 248(4959):1118–1119

    Article  PubMed  CAS  Google Scholar 

  • Narasimhan A, Tychsen L, Poukens V, Demer JL (2007) Horizontal rectus muscle anatomy in naturally and artificially strabismic monkeys. Invest Ophthalmol Vis Sci 48(6):2576–2588

    Article  PubMed  Google Scholar 

  • Oh SY, Poukens V, Demer JL (2001) Quantitative analysis of rectus extraocular muscle layers in monkey and humans. Invest Ophthalmol Vis Sci 42(1):10–16

    PubMed  CAS  Google Scholar 

  • Oh SY, Clark RA, Velez F, Rosenbaum AL, Demer JL (2002) Incomitant strabismus associated with instability of rectus pulleys. Invest Ophthalmol Vis Sci 43(7):2169–2178

    PubMed  Google Scholar 

  • Pola J, Robinson DA (1978) Oculomotor signals in medial longitudinal fasciculus of the monkey. J Neurophysiol 41(2):245–259

    PubMed  CAS  Google Scholar 

  • Quaia C, Optican LM (1998) Commutative saccadic generator is sufficient to control a 3-D ocular plant with pulleys. J Neurophysiol 79(6):3197–3215

    PubMed  CAS  Google Scholar 

  • Quaia C, Ying HS, Nichols AM, Optican LM (2009a) The viscoelastic properties of passive eye muscle in primates. I: Static forces and step responses. PLoS One 4(4):e4850

    Article  PubMed  Google Scholar 

  • Quaia C, Ying HS, Optican LM (2009b) The viscoelastic properties of passive eye muscle in primates. II: Testing the quasi-linear theory. PLoS One 4(8):e6480

    Article  PubMed  Google Scholar 

  • Quaia C, Ying HS, Optican LM (2010) The viscoelastic properties of passive eye muscle in primates. III: Force elicited by natural elongations. PLoS One 5(3):e9595

    Article  PubMed  Google Scholar 

  • Robinson DA (1964) The mechanics of human saccadic eye movement. J Physiol 174:245–264

    PubMed  CAS  Google Scholar 

  • Robinson DA (1968) Eye movement control in primates. The oculomotor system contains specialized subsystems for acquiring and tracking visual targets. Science 161(847):1219–1224

    Article  PubMed  CAS  Google Scholar 

  • Robinson DA (1981) Control of eye movements. In: Brooks V (ed) Handbook of physiology. The nervous system. Williams and Wilkins, Bethesda, MD, pp 1275–1320

    Google Scholar 

  • Robinson DA (1982) The use of matrices in analyzing the three-dimensional behavior of the vestibulo-ocular reflex. Biol Cybern 46:53–66

    Article  PubMed  CAS  Google Scholar 

  • Schoemaker I, Hoefnagel PP, Mastenbroek TJ, Kolff CF, Schutte S, van der Helm FC, Picken SJ, Gerritsen AF, Wielopolski PA, Spekreijse H, Simonsz HJ (2006) Elasticity, viscosity, and deformation of orbital fat. Invest Ophthalmol Vis Sci 47(11):4819–4826

    Article  PubMed  Google Scholar 

  • Schutte S, van den Bedem SP, van Keulen F, van der Helm FC, Simonsz HJ (2006) A finite-element analysis model of orbital biomechanics. Vision Res 46(11):1724–1731

    Article  PubMed  Google Scholar 

  • Seidman SH, Leigh RJ, Tomsak RL, Grant MP, Dell’Osso LF (1995) Dynamic properties of the human vestibulo-ocular reflex during head rotations in roll. Vision Res 35(5):679–689

    Article  PubMed  CAS  Google Scholar 

  • Sharpe JA, Wong AMF (2005) Anatomy and physiology of the ocular motor systems. In: Miller NR, Newman NJ (eds) Walsh and Hoyt’s clinical neuro-opthalmology, vol 1. Lippincott Williams and Wilkins, Philadelphia, pp 809–885

    Google Scholar 

  • Sklavos S, Porrill J, Kaneko CR, Dean P (2005) Evidence for wide range of time scales in oculomotor plant dynamics: implications for models of eye-movement control. Vision Res 45(12):1525–1542

    Article  PubMed  Google Scholar 

  • Sklavos S, Dimitrova DM, Goldberg SJ, Porrill J, Dean P (2006) Long time-constant behavior of the oculomotor plant in barbiturate-anesthetized primate. J Neurophysiol 95(2):774–782

    Article  PubMed  CAS  Google Scholar 

  • Spencer RF, Porter JD (1981) Innervation and structure of extraocular muscles in the monkey in comparison to those of the cat. J Comp Neurol 198(4):649–665

    Article  PubMed  CAS  Google Scholar 

  • Stahl JS, Simpson JI (1995) Dynamics of abducens nucleus neurons in the awake rabbit. J Neurophysiol 73(4):1383–1395

    PubMed  CAS  Google Scholar 

  • Sylvestre PA, Cullen KE (1999) Quantitative analysis of abducens neuron discharge dynamics during saccadic and slow eye movements. J Neurophysiol 82(5):2612–2632

    PubMed  CAS  Google Scholar 

  • Sylvestre PA, Cullen KE (2002) Dynamics of abducens nucleus neuron discharges during disjunctive saccades. J Neurophysiol 88(6):3452–3468

    Article  PubMed  Google Scholar 

  • Tweed DB, Haslwanter TP, Happe V, Fetter M (1999) Non-commutativity in the brain. Nature 399(6733):261–263

    Article  PubMed  CAS  Google Scholar 

  • Ugolini G, Klam F, Doldan Dans M, Dubayle D, Brandi AM, Buttner-Ennever J, Graf W (2006) Horizontal eye movement networks in primates as revealed by retrograde transneuronal transfer of rabies virus: differences in monosynaptic input to “slow” and “fast” abducens motoneurons. J Comp Neurol 498(6):762–785

    Article  PubMed  Google Scholar 

  • Warwick R (1953) Representation of the extraocular muscles in the oculomotor nuclei of the monkey. J Comp Neurol 98(3):449–503

    Article  PubMed  CAS  Google Scholar 

  • Wei Q, Pai DK (2008) Physically consistent registration of extraocular muscle models from MRI. Conf Proc IEEE Eng Med Biol Soc 2008:2237–2241

    PubMed  Google Scholar 

  • Wei Q, Sueda S, Pai DK (2010) Physically-based modeling and simulation of extraocular muscles. Prog Biophys Mol Biol 103(2–3):273–283

    Article  PubMed  Google Scholar 

  • Yoo L, Reed J, Shin A, Kung J, Gimzewski JK, Poukens V, Goldberg RA, Mancini R, Taban M, Moy R, Demer JL (2011) Characterization of ocular tissues using microindentation and hertzian viscoelastic models. Invest Ophthalmol Vis Sci 52(6):3475–3482

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant EY015312. I wish to thank Dr. Anand Joshi and the editors for critically reading the manuscript and providing helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vallabh E. Das Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Das, V.E. (2012). Motor Control of Extraocular Muscle. In: McLoon, L., Andrade, F. (eds) Craniofacial Muscles. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4466-4_4

Download citation

Publish with us

Policies and ethics