Skip to main content

Veterinary Vaccines

  • Chapter
  • First Online:
Long Acting Animal Health Drug Products

Part of the book series: Advances in Delivery Science and Technology ((ADST))

  • 1581 Accesses

Abstract

The technology of controlled release has always been attractive to ­veterinary vaccine developers as it has potential to bring a level of convenience, efficacy, and compliance to the use of vaccines. The ability to have in a single therapy or device all that it is required to sensitize and protect an animal may deliver access to new markets, provide differentiation to existing products, and solve ­hitherto unmet needs in veterinary immunology. However, few controlled release vaccine formulations are available at this time despite the sophistication of the materials and devices used for controlled release of medical and veterinary therapeutics. Recent advances in our understanding of how the immune system is sensitized is beginning to allow us to apply new and old technology of controlled release to vaccines across a number of livestock and companion animal species. The technology allows us to control how antigen and adjuvant are presented to the host with increasing fidelity resulting in appropriate levels and duration of immunity. The discovery that many adjuvants work by stimulating the innate immune system has led to the development of molecular adjuvants, which are well suited to devices and controlled release formulations. As controlled release vaccine formulations near late development there are regulatory concerns that need to be addressed as familiar and unfamiliar vaccine components are presented to regulators in a persistent form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305

    Article  CAS  PubMed  Google Scholar 

  2. Schijns VE (2002) Antigen delivery systems and immunostimulation. Vet Immunol Immunopathol 87:195–198

    Article  CAS  PubMed  Google Scholar 

  3. Zinkernagel RM (2003) On natural and artificial vaccinations. Ann Rev Immunol 21:515–546

    Article  CAS  Google Scholar 

  4. Medzhitov R, Shevach EM, Trinchieri G, Mellor AL, Munn DH, Gordon S, Libby P, Hansson GK, Shortman K, Dong C, Gabrilovich D, Gabryšová L, Howes A, O’Garra A (2011) Highlights of 10 years of immunology in nature reviews immunology. Nat Rev Immunol 11:693–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Meeusen ENT, Walker J, Peters A, Pastoret P, Jungersen G (2007) Current status of veterinary vaccines. Clin Microbiol Rev 20:489–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brown AT, Gregory AR, Ellis TM, Hearnden MN (1999) Comparative immunogenicity of two bivalent botulinum vaccines. Aust Vet J 77:388–391

    Article  CAS  PubMed  Google Scholar 

  7. Powell MF (1996) Drug delivery issues in vaccine development. Pharm Res 13:1777–1785

    Article  CAS  PubMed  Google Scholar 

  8. Bishop GA, Hostager BS (2001) B lymphocyte activation by contact-mediated interactions with T lymphocytes. Curr Opin Immunol 13:278–285

    Article  CAS  PubMed  Google Scholar 

  9. McHeyzer-Williams MG (2003) B cells as effectors. Curr Opin Immunol 15:354–361

    Article  CAS  PubMed  Google Scholar 

  10. Uzal FA, Bodero DA, Kelly WR, Nielsen K (1998) Variability of serum antibody responses of goat kids to a commercial Clostridium perfringens epsilon toxoid vaccine. Vet Rec 143:472–474

    Article  CAS  PubMed  Google Scholar 

  11. Mitchison NA (1965) Induction of immunological paralysis in two zones of dosage. Proc R Soc London-B 161:275–292

    Google Scholar 

  12. Nossal GJ, Karvelas M, Pulendran B (1993) Soluble antigen profoundly reduces memory B-cell numbers even when given after challenge immunization. Proc Natl Acad Sci U S A 90:3088–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kemp JM, Kajihara M, Nagahara S, Sano A, Brandon M, Lofthouse S (2002) Continuous antigen delivery from controlled release implants induces significant and anamnestic immune responses. Vaccine 20:1089–1098

    Article  CAS  PubMed  Google Scholar 

  14. Hanes J, Cleland JL, Langer R (1997) New advances in microsphere-based single-dose vaccines. Adv Drug Deliver Rev 28:97–119

    Article  CAS  Google Scholar 

  15. Cleland JL, Lim A, Daugherty A, Barron L, Desjardin N, Duenas ET, Eastman DJ, Vennari JC, Wrin T, Berman P, Murthy KK, Powell MF (1998) Development of a single-shot subunit vaccine for HIV-1. 5. programmable in vivo autoboost and long lasting neutralizing response. J Pharm Sci 87:1489–1495

    Article  CAS  PubMed  Google Scholar 

  16. Cleland JL (1999) Single-administration vaccines: controlled-release technology to mimic repeated immunizations. Trends Biotechnol 17:25–29

    Article  CAS  PubMed  Google Scholar 

  17. Zinkernagel RM (2000) Localization dose and time of antigens determine immune reactivity. Semin Immunol 12:163–171

    Article  CAS  PubMed  Google Scholar 

  18. Lofthouse S (2002) Immunological aspects of controlled antigen delivery. Adv Drug Deliv Rev 54:863–870

    Article  CAS  PubMed  Google Scholar 

  19. Walduck AK, Opdebeeck JP, Benson HE, Prankerd R (1998) Biodegradable implants for the delivery of veterinary vaccines: design, manufacture and antibody responses in sheep. J Control Release 51:269–280

    Article  CAS  PubMed  Google Scholar 

  20. Sanchez A, Gupta RK, Alonso MJ, Siber GR, Langer R (1996) Pulsed controlled-release system for potential use in vaccine delivery. Pharm Sci 85:547–552

    Article  CAS  Google Scholar 

  21. Hughes HP, Campos M, van Drunen Littel-van den Hurk S, Zamb T, Sordillo LM, Godson D, Babiuk LA (1992) Multiple administration with interleukin-2 potentiates antigen-specific responses to subunit vaccination with bovine herpesvirus-1 glycoprotein IV. Vaccine 10:226–230

    Article  CAS  PubMed  Google Scholar 

  22. Bretscher P, Cohn M (1970) A theory of self-nonself discrimination. Science 169:1042–1049

    Article  CAS  PubMed  Google Scholar 

  23. Lafferty KJ, Cunningham AJ (1975) A new analysis of allogeneic interactions. Aust J Exp Biol Med Sci 53:27–42

    Article  CAS  PubMed  Google Scholar 

  24. Medzhitov R, Janeway CA (1996) On the semantics of immune recognition. Res Immunol 147:208–214

    Article  CAS  PubMed  Google Scholar 

  25. De Veer M, Meeusen E (2011) New developments in vaccine research - unveiling the secret of vaccine adjuvants. Discov Med 12:195–204

    PubMed  Google Scholar 

  26. Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects. Ann Rev Immunol 20:709–760

    Article  CAS  Google Scholar 

  27. Diwan M, Tafaghodi M, Samuel J (2002) Enhancement of immune responses by co-delivery of a CpG oligodeoxynucleotide and tetanus toxoid in biodegradable nanospheres. J Control Release 85:247–262

    Article  CAS  PubMed  Google Scholar 

  28. Krishnamachari Y, Salem AK (2009) Innovative strategies for co-delivering antigens and CpG oligonucleotides. Adv Drug Deliv Rev 61:205–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bachmann MF, Jennings GT (2010) Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 10:787–796

    Article  CAS  PubMed  Google Scholar 

  30. De Veer M, Kemp J, Chatelier J, Elhay MJ, Meeusen EN (2010) The kinetics of soluble and particulate antigen trafficking in the afferent lymph, and its modulation by aluminum-based adjuvant. Vaccine 28:6597–6602

    Article  PubMed  CAS  Google Scholar 

  31. Cyster JG (2010) B cell follicles and antigen encounters of the third kind. Nat Immunol 11:989–996

    Article  CAS  PubMed  Google Scholar 

  32. Hem SL, HogenEsch H (2007) Relationship between physical and chemical properties of aluminium-containing adjuvants and immunopotentiation. Expert Rev Vaccines 6:685–698

    Article  CAS  PubMed  Google Scholar 

  33. Van Nierop K, de Groot C (2002) Human follicular dendritic cells: function, origin and development. Semin Immunol 14:251–257

    Article  PubMed  CAS  Google Scholar 

  34. Carragher DM, Rangel-Moreno J, Randall TD (2008) Ectopic lymphoid tissues and local immunity. Semin Immunol 20:26–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aguado MT (1993) Future approaches to vaccine development: single-dose vaccines using controlled-release delivery systems. Vaccine 11:596–597

    Article  CAS  PubMed  Google Scholar 

  36. Periwal SB, Speaker TJ, Cebra JJ (1997) Orally administered microencapsulated reovirus can bypass suckled, neutralizing maternal antibody that inhibits active immunization of neonates. J Virol 71:2844–2850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Siegrist CA (2003) Mechanisms by which maternal antibodies influence infant vaccine responses: review of hypotheses and definition of main determinants. Vaccine 21:3406–3412

    Article  CAS  PubMed  Google Scholar 

  38. Alonso MJ, Cohen S, Park TG, Gupta RK, Siber GR, Langer R (1993) Determinants of release rate of tetanus vaccine from polyester microspheres. Pharm Res 10:945–953

    Article  CAS  PubMed  Google Scholar 

  39. Chaudhury MR, Sharma K, Giri DK (1996) Poly (d, l-lactide) glycolide polymer microsphere entrapped tetanus toxoid: safety evaluation in Wistar rats. Hum Exp Toxicol 15:205–207

    Article  CAS  PubMed  Google Scholar 

  40. Higaki M, Azechi Y, Takase T, Igarashi R, Nagahara S, Sano A, Fujioka K, Nakagawa N, Aizawa C, Mizushima Y (2001) Collagen minipellet as a controlled release delivery system for tetanus and diphtheria toxoid. Vaccine 19:3091–3096

    Article  CAS  PubMed  Google Scholar 

  41. Jaganathan KS, Rao YU, Singh P, Prabakaran D, Gupta S, Jain A, Vyas S (2005) Development of a single dose tetanus toxoid formulation based on polymeric microspheres: a comparative study of poly(d, l-lactic-co-glycolic acid) versus chitosan microspheres. Int J Pharm 294:23–32

    Article  CAS  PubMed  Google Scholar 

  42. Cardamone M, Lofthouse SA, Lucas JC, Lee RP, O’Donoghue M, Brandon MR (1997) In vitro testing of a pulsatile delivery system and its in vivo application for immunisation against tetanus toxoid. J Control Release 47:205–219

    Article  CAS  Google Scholar 

  43. Lofthouse S, Nagahara S, Sedgmen B, Barcham G, Brandon M, Sano A (2001) The application of biodegradable collagen minipellets as vaccine delivery vehicles in mice and sheep. Vaccine 19:4318–4327

    Article  CAS  PubMed  Google Scholar 

  44. Lofthouse SA, Kajihara M, Nagahara S, Nash A, Barcham GJ, Sedgmen B, Brandon MR, Sano A (2002) Injectable silicone implants as vaccine delivery vehicles. Vaccine 20:1725–1732

    Article  CAS  PubMed  Google Scholar 

  45. Kidane A, Guimond P, Ju TR, Sanchez M, Gibson J, Bowersock TL (2001) The efficacy of oral vaccination of mice with alginate encapsulated outer membrane proteins of Pasteurella haemolytica and One-Shot. Vaccine 19:2637–2646

    Article  CAS  PubMed  Google Scholar 

  46. Mansour M, Brown RG, Morris A (2007) Improved efficacy of a licensed acellular pertussis vaccine, reformulated in an adjuvant emulsion of liposomes in oil, in a murine model. Clin Vaccine Immunol 14:1381–1383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moser CA, Speaker TJ, Offit PA (1997) Effect of microencapsulation on immunogenicity of a bovine herpes virus glycoproteinn and inactivated influenza virus in mice. Vaccine 15:1767–1772

    Article  CAS  PubMed  Google Scholar 

  48. Toussaint JF, Dubois A, Dispas M, Paquet D, Letellier C, Kerkhofs P (2007) Delivery of DNA vaccines by agarose hydrogel implants facilitates genetic immunization in cattle. Vaccine 25:1167–1174

    Article  CAS  PubMed  Google Scholar 

  49. Liman M, Peiser L, Zimmer G, Pröpsting M, Naim HY, Rautenschlein S (2007) A genetically engineered prime-boost vaccination strategy for oculonasal delivery with poly(D, L-lactic-co-glycolic acid) microparticles against infection of turkeys with avian Metapneumovirus. Vaccine 25:7914–7926

    Article  CAS  PubMed  Google Scholar 

  50. Turner JW, Liu IK, Flanagan DR, Bynum KS, Rutberg AT (2002) Porcine zona pellucida (PZP) immunocontraception of wild horses (Equus caballus) in Nevada: a 10 year study. Reprod Suppl 60:177–186

    CAS  PubMed  Google Scholar 

  51. Turner JW, Rutberg AT, Naugle RE, Kaur MA, Flanagan DR, Bertschinger HJ, Liu IK (2008) Controlled-release components of PZP contraceptive vaccine extend duration of infertility. Wildlife Res 35:555–562

    Article  CAS  Google Scholar 

  52. Dunshea FR, Colantoni C, Howard K, McCauley I, Jackson P, Long KA, Lopaticki S, Nugent EA, Simons JA, Walker J, Hennessy DP (2001) Vaccination of boars with a GnRH vaccine (Improvac) eliminates boar taint and increases growth performance. J Anim Sci 79:2524–2535

    Article  CAS  PubMed  Google Scholar 

  53. Elhay M, Newbold A, Britton A, Turley P, Dowsett K, Walker J (2007) Suppression of behavioural and physiological oestrus in the mare by vaccination against GnRH. Aust Vet J 85:39–45

    Article  CAS  PubMed  Google Scholar 

  54. Earl ER, Waterston MM, Aughey E, Harvey MJ, Matschke C, Colston A, Ferro VA (2006) Evaluation of two GnRH-I based vaccine formulations on the testes function of entire Suffolk cross ram lambs. Vaccine 24:3172–3183

    Article  CAS  PubMed  Google Scholar 

  55. Singh M, Li XM, Wang H, McGee JP, Zamb T, Koff W, Wang CY, O’Hagan DT (1997) Immunogenicity and protection in small-animal models with controlled-release tetanus toxoid microparticles as a single-dose vaccine. Infect Immun 65:1716–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chandrasekaran R, Giri DK, Chaudhury MR (1996) Embryotoxicity and teratogenicity studies of poly (DL-lactide-co-glycolide) microspheres incorporated tetanus toxoid in Wistar rats. Hum Exp Toxicol 15:349–351

    Article  CAS  PubMed  Google Scholar 

  57. Zhou S, Liao X, Li X et al (2003) Poly-d, l-lactide-co-poly(ethylene glycol) microspheres as potential vaccine delivery systems. J Control Release 86:195–205

    Article  CAS  PubMed  Google Scholar 

  58. Kang ML, Cho CS, Yoo HS (2009) Application of chitosan microspheres for nasal delivery of vaccines. Biotechnol Adv 27:857–865

    Article  CAS  PubMed  Google Scholar 

  59. Oh EJ, Park K, Kim KS, Jiseok K, Yang J-A, J-Ha K, Lee MY, Hoffman AS, Hahn SK (2010) Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J Control Release 141:2–12

    Article  CAS  PubMed  Google Scholar 

  60. Keppeler S, Ellis A, Jacquier JC (2009) Cross-linked carrageenan beads for controlled release delivery systems. Carbohyd Polym 78:973–977

    Article  CAS  Google Scholar 

  61. Bowersock TL, Narishetty S (2009) Vaccine delivery. In: Morishita M, Park K (eds) Biodrug delivery systems, fundamentals applications, and clinical development. Informa Healthcare, New York, pp 412–424

    Google Scholar 

  62. Bowersock TL, Martin S (1999) Vaccine delivery to animals. Adv Drug Deliver Rev 38:167–194

    Article  CAS  Google Scholar 

  63. Aucouturier J, Dupuis L, Ganne V (2001) Adjuvants designed for veterinary and human vaccines. Vaccine 19:2666–2672

    Article  CAS  PubMed  Google Scholar 

  64. Mutoloki S, Alexandersen S, Gravningen K, Evensen O (2008) Time-course study of injection site inflammatory reactions following intraperitoneal injection of Atlantic cod (Gadus morhua L.) with oil-adjuvanted vaccines. Fish Shellfish Immunol 24:386–393

    Article  CAS  PubMed  Google Scholar 

  65. Pilström L (2005) Adaptive immunity in teleosts: humoral immunity. In: Midtlyng PJ (ed) Progress in fish vaccinology. Karger, Switzerland, p 23

    Google Scholar 

  66. Anderson DP (1997) Adjuvants and immunostimulants for enhancing vaccine potency in fish. Dev Biol Stand 90:257–265

    CAS  PubMed  Google Scholar 

  67. MacDonald LD, Fuentes-Ortega A, Sammatur L (2010) Efficacy of a single dose hepatitis B depot vaccine. Vaccine 28:7143–7145

    Article  CAS  PubMed  Google Scholar 

  68. Karkada M, Weir GM, Quinton T, Fuentes-Ortega A, Mansour M (2010) A liposome-based platform, VacciMax, and its modified water-free platform DepoVax enhance efficacy of in vivo nucleic acid delivery. Vaccine 28:6176–6182

    Article  CAS  PubMed  Google Scholar 

  69. Medlicott NJ, Tucker IG (1999) Pulsatile release from subcutaneous implants. Adv Drug Deliver Rev 38:139–149

    Article  CAS  Google Scholar 

  70. Sullivan MM, Vanoverbeke DL, Kinman LA, Krehbiel CR, Hilton GG, Morgan JB (2009) Comparison of the Biobullet versus traditional pharmaceutical injection techniques on injection-site tissue damage and tenderness in beef subprimals. J Anim Sci 87:716–722

    Article  CAS  PubMed  Google Scholar 

  71. Bowersock TL, HogenEsch H, Torregrosa S, Borie D, Wang B, Park H, Park K (1998) Induction of pulmonary immunity in cattle by oral administration of ovalbumin in alginate microspheres. Immunol Lett 60:37–43

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Elhay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Controlled Release Society

About this chapter

Cite this chapter

Elhay, M.J. (2013). Veterinary Vaccines. In: Rathbone, M., McDowell, A. (eds) Long Acting Animal Health Drug Products. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4439-8_14

Download citation

Publish with us

Policies and ethics