Skip to main content

HIV-Derived Vectors for Gene Therapy Targeting Dendritic Cells

  • Chapter
  • First Online:
HIV Interactions with Dendritic Cells

Abstract

Human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LV) have the potential to mediate stable therapeutic gene transfer. However, similarly to other viral vectors, their benefit is compromised by the induction of an immune response toward transgene-expressing cells that closely mimics antiviral immunity. LV share with the parental HIV the ability to activate dendritic cells (DC), while lack the peculiar ability of subverting DC functions, which is responsible for HIV immune escape. Understanding the interaction between LV and DC, with plasmacytoid and myeloid DC playing fundamental and distinct roles, has paved the way to novel approaches aimed at regulating transgene-specific immune responses. Thanks to the ability to target either DC subsets LV might be a powerful tool to induce immunity (i.e., gene therapy of cancer), cell death (i.e., in HIV/AIDS infection), or tolerance (i.e., gene therapy strategies for monogenic diseases). In this chapter, similarities and differences between the LV-mediated and HIV-mediated induction of immune responses, with specific focus on their interactions with DC, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A et al (2002) Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296(5577):2410–2413

    PubMed  CAS  Google Scholar 

  • Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L et al (2009) Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 360(5):447–458

    PubMed  CAS  Google Scholar 

  • Amendola M, Venneri MA, Biffi A, Vigna E, Naldini L (2005) Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 23(1):108–116

    PubMed  CAS  Google Scholar 

  • Amendola M, Passerini L, Pucci F, Gentner B, Bacchetta R, Naldini L (2009) Regulated and multiple miRNA and siRNA delivery into primary cells by a lentiviral platform. Mol Ther 17(6):1039–1052

    PubMed  CAS  Google Scholar 

  • Andolfi G, Fousteri G, Rossetti M, Magnani C, Jofra T, Locafaro G, Bondanza A, Silvia Gregori S, Roncarolo MG (2012) Enforced IL-10 Expression Confers Type 1 Regulatory T Cell (Tr1) Phenotype and Function to Human CD4+ T Cells. Mol Ther. 2012 Jun 12 [ePub ahead of print].

    PubMed  CAS  Google Scholar 

  • Annoni A, Battaglia M, Follenzi A, Lombardo A, Sergi-Sergi L, Naldini L et al (2007) The immune response to lentiviral-delivered transgene is modulated in vivo by transgene-expressing antigen-presenting cells but not by CD4+ CD25+ regulatory T cells. Blood 110(6):1788–1796

    PubMed  CAS  Google Scholar 

  • Annoni A, Brown BD, Cantore A, Sergi LS, Naldini L, Roncarolo MG (2009) In vivo delivery of a microRNA-regulated transgene induces antigen-specific regulatory T cells and promotes immunologic tolerance. Blood 114(25):5152–5161

    PubMed  CAS  Google Scholar 

  • Arce F, Rowe HM, Chain B, Lopes L, Collins MK (2009) Lentiviral vectors transduce proliferating dendritic cell precursors leading to persistent antigen presentation and immunization. Mol Ther 17(9):1643–1650

    PubMed  CAS  Google Scholar 

  • Arruda VR, Favaro P, Finn JD (2009) Strategies to modulate immune responses: a new frontier for gene therapy. Mol Ther 17(9):1492–1503

    PubMed  CAS  Google Scholar 

  • Bahner I, Sumiyoshi T, Kagoda M, Swartout R, Peterson D, Pepper K et al (2007) Lentiviral vector transduction of a dominant-negative Rev gene into human CD34+ hematopoietic progenitor cells potently inhibits human immunodeficiency virus-1 replication. Mol Ther 15(1):76–85

    PubMed  CAS  Google Scholar 

  • Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358(21):2231–2239

    PubMed  CAS  Google Scholar 

  • Banasik MB, McCray PB Jr (2010) Integrase-defective lentiviral vectors: progress and applications. Gene Ther 17(2): 150–157

    Google Scholar 

  • Barrat FJ, Meeker T, Gregorio J, Chan JH, Uematsu S, Akira S et al (2005) Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med 202(8):1131–1139

    PubMed  CAS  Google Scholar 

  • Barron MA, Blyveis N, Palmer BE, MaWhinney S, Wilson CC (2003) Influence of plasma viremia on defects in number and immunophenotype of blood dendritic cell subsets in human immunodeficiency virus 1-infected individuals. J Infect Dis 187(1):26–37

    PubMed  Google Scholar 

  • Beignon AS, McKenna K, Skoberne M, Manches O, DaSilva I, Kavanagh DG et al (2005) Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J Clin Invest 115(11):3265–3275

    PubMed  CAS  Google Scholar 

  • Biffi A, Bartolomae CC, Cesana D, Cartier N, Aubourg P, Ranzani M et al (2011) Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection. Blood 117(20):5332–5339

    PubMed  CAS  Google Scholar 

  • Breckpot K, Corthals J, Heirman C, Bonehill A, Michiels A, Tuyaerts S et al (2004) Activation of monocytes via the CD14 receptor leads to the enhanced lentiviral transduction of immature dendritic cells. Hum Gene Ther 15(6):562–573

    PubMed  CAS  Google Scholar 

  • Breckpot K, Emeagi PU, Thielemans K (2008) Lentiviral vectors for anti-tumor immunotherapy. Curr Gene Ther 8(6):438–448

    PubMed  CAS  Google Scholar 

  • Brown BD, Venneri MA, Zingale A, Sergi Sergi L, Naldini L (2006) Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat Med 12(5):585–591

    PubMed  CAS  Google Scholar 

  • Brown BD, Cantore A, Annoni A, Sergi LS, Lombardo A, Della Valle P et al (2007a) A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood 110(13):4144–4152

    PubMed  CAS  Google Scholar 

  • Brown BD, Sitia G, Annoni A, Hauben E, Sergi LS, Zingale A et al (2007b) In vivo administration of lentiviral vectors triggers a type I interferon response that restricts hepatocyte gene transfer and promotes vector clearance. Blood 109(7):2797–2805

    PubMed  CAS  Google Scholar 

  • Browning MT, Schmidt RD, Lew KA, Rizvi TA (2001) Primate and feline lentivirus vector RNA packaging and propagation by heterologous lentivirus virions. J Virol 75(11):5129–5140

    PubMed  CAS  Google Scholar 

  • Brussel A, Sonigo P (2004) Evidence for gene expression by unintegrated human immunodeficiency virus type 1 DNA species. J Virol 78(20):11263–11271

    PubMed  CAS  Google Scholar 

  • Bukovsky AA, Song JP, Naldini L (1999) Interaction of human immunodeficiency virus-derived vectors with wild-type virus in transduced cells. J Virol 73(8):7087–7092

    PubMed  CAS  Google Scholar 

  • Carbonneil C, Donkova-Petrini V, Aouba A, Weiss L (2004) Defective dendritic cell function in HIV-infected patients receiving effective highly active antiretroviral therapy: neutralization of IL-10 production and depletion of CD4+ CD25+ T cells restore high levels of HIV-specific CD4+ T cell responses induced by dendritic cells generated in the presence of IFN-alpha. J Immunol 172(12):7832–7840

    PubMed  CAS  Google Scholar 

  • Chen X, He J, Chang LJ (2004) Alteration of T cell immunity by lentiviral transduction of human monocyte-derived dendritic cells. Retrovirology 1:37

    PubMed  Google Scholar 

  • Di Domizio J, Blum A, Gallagher-Gambarelli M, Molens JP, Chaperot L, Plumas J (2009) TLR7 stimulation in human plasmacytoid dendritic cells leads to the induction of early IFN-inducible genes in the absence of type I IFN. Blood 114(9):1794–1802

    PubMed  Google Scholar 

  • DiGiusto DL, Krishnan A, Li L, Li H, Li S, Rao A et al (2010) RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med 2(36):36ra43

    PubMed  Google Scholar 

  • Dillon SM, Robertson KB, Pan SC, Mawhinney S, Meditz AL, Folkvord JM et al (2008) Plasmacytoid and myeloid dendritic cells with a partial activation phenotype accumulate in lymphoid tissue during asymptomatic chronic HIV-1 infection. J Acquir Immune Defic Syndr 48(1):1–12

    PubMed  CAS  Google Scholar 

  • Donaghy H, Pozniak A, Gazzard B, Qazi N, Gilmour J, Gotch F et al (2001) Loss of blood CD11c(+) myeloid and CD11c(−) plasmacytoid dendritic cells in patients with HIV-1 infection correlates with HIV-1 RNA virus load. Blood 98(8):2574–2576

    PubMed  CAS  Google Scholar 

  • Donaghy H, Gazzard B, Gotch F, Patterson S (2003) Dysfunction and infection of freshly isolated blood myeloid and plasmacytoid dendritic cells in patients infected with HIV-1. Blood 101(11):4505–4511

    PubMed  CAS  Google Scholar 

  • Dropulic B, Lin NH, Martin MA, Jeang KT (1992) Functional characterization of a U5 ribozyme: intracellular suppression of human immunodeficiency virus type 1 expression. J Virol 66(3):1432–1441

    PubMed  CAS  Google Scholar 

  • Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72(11):8463–8471

    PubMed  CAS  Google Scholar 

  • Dullaers M, Van Meirvenne S, Heirman C, Straetman L, Bonehill A, Aerts JL et al (2006) Induction of effective therapeutic antitumor immunity by direct in vivo administration of lentiviral vectors. Gene Ther 13(7):630–640

    PubMed  CAS  Google Scholar 

  • Duzgunes N, Simoes S, Konopka K, Rossi JJ, Pedroso de Lima MC (2001) Delivery of novel macromolecular drugs against HIV-1. Expert Opin Biol Ther 1(6):949–970

    PubMed  CAS  Google Scholar 

  • Dyall J, Latouche JB, Schnell S, Sadelain M (2001) Lentivirus-transduced human monocyte-derived dendritic cells efficiently stimulate antigen-specific cytotoxic T lymphocytes. Blood 97(1):114–121

    PubMed  CAS  Google Scholar 

  • Ellis J (2005) Silencing and variegation of gammaretrovirus and lentivirus vectors. Hum Gene Ther 16(11):1241–1246

    PubMed  CAS  Google Scholar 

  • Endres MJ, Jaffer S, Haggarty B, Turner JD, Doranz BJ, O’Brien PJ et al (1997) Targeting of HIV- and SIV-infected cells by CD4-chemokine receptor pseudotypes. Science 278(5342):1462–1464

    PubMed  CAS  Google Scholar 

  • Esslinger C, Chapatte L, Finke D, Miconnet I, Guillaume P, Levy F et al (2003) In vivo administration of a lentiviral vaccine targets DCs and induces efficient CD8(+) T cell responses. J Clin Invest 111(11):1673–1681

    PubMed  CAS  Google Scholar 

  • Follenzi A, Sabatino G, Lombardo A, Boccaccio C, Naldini L (2002) Efficient gene delivery and targeted expression to hepatocytes in vivo by improved lentiviral vectors. Hum Gene Ther 13(2):243–260

    PubMed  CAS  Google Scholar 

  • Follenzi A, Battaglia M, Lombardo A, Annoni A, Roncarolo MG, Naldini L (2004) Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. Blood 103(10):3700–3709

    PubMed  CAS  Google Scholar 

  • Follenzi A, Santambrogio L, Annoni A (2007) Immune responses to lentiviral vectors. Curr Gene Ther 7(5):306–315

    PubMed  CAS  Google Scholar 

  • Fonteneau JF, Larsson M, Beignon AS, McKenna K, Dasilva I, Amara A et al (2004) Human immunodeficiency virus type 1 activates plasmacytoid dendritic cells and concomitantly induces the bystander maturation of myeloid dendritic cells. J Virol 78(10):5223–5232

    PubMed  CAS  Google Scholar 

  • Geijtenbeek TB, van Kooyk Y (2003) Pathogens target DC-SIGN to influence their fate DC-SIGN functions as a pathogen receptor with broad specificity. APMIS 111(7–8):698–714

    PubMed  CAS  Google Scholar 

  • Gilliet M, Cao W, Liu YJ (2008) Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 8(8):594–606

    PubMed  CAS  Google Scholar 

  • Goudy KS, Annoni A, Naldini L, Roncarolo MG (2011) Manipulating immune tolerance with micro-RNA regulated gene therapy. Front Microbiol 2:221

    PubMed  Google Scholar 

  • Goujon C, Jarrosson-Wuilleme L, Bernaud J, Rigal D, Darlix JL, Cimarelli A (2003) Heterologous human immunodeficiency virus type 1 lentiviral vectors packaging a simian immunodeficiency virus-derived genome display a specific postentry transduction defect in dendritic cells. J Virol 77(17):9295–9304

    PubMed  CAS  Google Scholar 

  • Granelli-Piperno A, Golebiowska A, Trumpfheller C, Siegal FP, Steinman RM (2004) HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation. Proc Natl Acad Sci U S A 101(20):7669–7674

    PubMed  CAS  Google Scholar 

  • Granelli-Piperno A, Shimeliovich I, Pack M, Trumpfheller C, Steinman RM (2006) HIV-1 selectively infects a subset of nonmaturing BDCA1-positive dendritic cells in human blood. J Immunol 176(2):991–998

    PubMed  CAS  Google Scholar 

  • Grassi F, Hosmalin A, McIlroy D, Calvez V, Debre P, Autran B (1999) Depletion in blood CD11c-positive dendritic cells from HIV-infected patients. AIDS 13(7):759–766

    PubMed  CAS  Google Scholar 

  • Gruber A, Kan-Mitchell J, Kuhen KL, Mukai T, Wong-Staal F (2000) Dendritic cells transduced by multiply deleted HIV-1 vectors exhibit normal phenotypes and functions and elicit an HIV-specific cytotoxic T-lymphocyte response in vitro. Blood 96(4):1327–1333

    PubMed  CAS  Google Scholar 

  • Guiducci C, Ott G, Chan JH, Damon E, Calacsan C, Matray T et al (2006) Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. J Exp Med 203(8):1999–2008

    PubMed  CAS  Google Scholar 

  • Harman AN, Wilkinson J, Bye CR, Bosnjak L, Stern JL, Nicholle M et al (2006) HIV induces maturation of monocyte-derived dendritic cells and Langerhans cells. J Immunol 177(10):7103–7113

    PubMed  CAS  Google Scholar 

  • Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L et al (2008) Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 19(10):979–990

    PubMed  CAS  Google Scholar 

  • Hodges A, Sharrocks K, Edelmann M, Baban D, Moris A, Schwartz O et al (2007) Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication. Nat Immunol 8(6):569–577

    PubMed  CAS  Google Scholar 

  • Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K et al (2009) Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 360(7):692–698

    PubMed  Google Scholar 

  • Joseph A, Zheng JH, Chen K, Dutta M, Chen C, Stiegler G et al (2010) Inhibition of in vivo HIV infection in humanized mice by gene therapy of human hematopoietic stem cells with a lentiviral vector encoding a broadly neutralizing anti-HIV antibody. J Virol 84(13):6645–6653

    PubMed  CAS  Google Scholar 

  • Kang Y, Xie L, Tran DT, Stein CS, Hickey M, Davidson BL et al (2005) Persistent expression of factor VIII in vivo following nonprimate lentiviral gene transfer. Blood 106(5):1552–1558

    PubMed  CAS  Google Scholar 

  • Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA et al (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369(9579):2097–2105

    PubMed  CAS  Google Scholar 

  • Kawamura T, Gatanaga H, Borris DL, Connors M, Mitsuya H, Blauvelt A (2003) Decreased stimulation of CD4+ T cell proliferation and IL-2 production by highly enriched populations of HIV-infected dendritic cells. J Immunol 170(8):4260–4266

    PubMed  CAS  Google Scholar 

  • Keir ME, Stoddart CA, Linquist-Stepps V, Moreno ME, McCune JM (2002) IFN-alpha secretion by type 2 predendritic cells up-regulates MHC class I in the HIV-1-infected thymus. J Immunol 168(1):325–331

    PubMed  CAS  Google Scholar 

  • Kim VN, Mitrophanous K, Kingsman SM, Kingsman AJ (1998) Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1. J Virol 72(1):811–816

    PubMed  CAS  Google Scholar 

  • Krathwohl MD, Schacker TW, Anderson JL (2006) Abnormal presence of semimature dendritic cells that induce regulatory T cells in HIV-infected subjects. J Infect Dis 193(4):494–504

    PubMed  CAS  Google Scholar 

  • Kuate S, Stahl-Hennig C, Stoiber H, Nchinda G, Floto A, Franz M et al (2006) Immunogenicity and efficacy of immunodeficiency virus-like particles pseudotyped with the G protein of vesicular stomatitis virus. Virology 351(1):133–144

    PubMed  CAS  Google Scholar 

  • Leavitt MC, Yu M, Yamada O, Kraus G, Looney D, Poeschla E et al (1994) Transfer of an anti-HIV-1 ribozyme gene into primary human lymphocytes. Hum Gene Ther 5(9):1115–1120

    PubMed  CAS  Google Scholar 

  • Lee CL, Dang J, Joo KI, Wang P (2011) Engineered lentiviral vectors pseudotyped with a CD4 receptor and a fusogenic protein can target cells expressing HIV-1 envelope proteins. Virus Res 160(1–2):340–350

    PubMed  CAS  Google Scholar 

  • Lehmann C, Lafferty M, Garzino-Demo A, Jung N, Hartmann P, Fatkenheuer G et al (2010) Plasmacytoid dendritic cells accumulate and secrete interferon alpha in lymph nodes of HIV-1 patients. PLoS One 5(6):e11110

    PubMed  Google Scholar 

  • Lester RT, Yao XD, Ball TB, McKinnon LR, Kaul R, Wachihi C et al (2008) Toll-like receptor expression and responsiveness are increased in viraemic HIV-1 infection. AIDS 22(6):685–694

    PubMed  CAS  Google Scholar 

  • Limberis MP, Bell CL, Heath J, Wilson JM (2010) Activation of transgene-specific T cells following lentivirus-mediated gene delivery to mouse lung. Mol Ther 18(1):143–150

    PubMed  CAS  Google Scholar 

  • Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306

    PubMed  CAS  Google Scholar 

  • Lizee G, Gonzales MI, Topalian SL (2004) Lentivirus vector-mediated expression of tumor-associated epitopes by human antigen presenting cells. Hum Gene Ther 15(4):393–404

    PubMed  CAS  Google Scholar 

  • Lopes L, Fletcher K, Ikeda Y, Collins M (2006) Lentiviral vector expression of tumour antigens in dendritic cells as an immunotherapeutic strategy. Cancer Immunol Immunother 55(8):1011–1016

    PubMed  CAS  Google Scholar 

  • Lore K, Sonnerborg A, Brostrom C, Goh LE, Perrin L, McDade H et al (2002) Accumulation of DC-SIGN+ CD40+ dendritic cells with reduced CD80 and CD86 expression in lymphoid tissue during acute HIV-1 infection. AIDS 16(5):683–692

    PubMed  Google Scholar 

  • Markusic DM, van Til NP, Hiralall JK, Elferink RP, Seppen J (2009) Reduction of liver macrophage transduction by pseudotyping lentiviral vectors with a fusion envelope from Autographa californica GP64 and Sendai virus F2 domain. BMC Biotechnol 9:85

    PubMed  Google Scholar 

  • Marodon G (2001) CD4 down modulation on T-cells: an ‘immune’ checkpoint for HIV. Immunol Lett 79(3):165–168

    PubMed  CAS  Google Scholar 

  • Marsac D, Loirat D, Petit C, Schwartz O, Michel ML (2002) Enhanced presentation of major histocompatibility complex class I-restricted human immunodeficiency virus type 1 (HIV-1) Gag-specific epitopes after DNA immunization with vectors coding for vesicular stomatitis virus glycoprotein-pseudotyped HIV-1 Gag particles. J Virol 76(15):7544–7553

    PubMed  CAS  Google Scholar 

  • Martinson JA, Roman-Gonzalez A, Tenorio AR, Montoya CJ, Gichinga CN, Rugeles MT et al (2007) Dendritic cells from HIV-1 infected individuals are less responsive to toll-like receptor (TLR) ligands. Cell Immunol 250(1–2):75–84

    PubMed  CAS  Google Scholar 

  • Matrai J, Cantore A, Bartholomae CC, Annoni A, Wang W, Acosta-Sanchez A et al (2011) Hepatocyte-targeted expression by integrase-defective lentiviral vectors induces antigen-specific tolerance in mice with low genotoxic risk. Hepatology 53(5):1696–1707

    PubMed  CAS  Google Scholar 

  • Mautino MR, Morgan RA (2000) Potent inhibition of human immunodeficiency virus type 1 replication by conditionally replicating human immunodeficiency virus-based lentiviral vectors expressing envelope antisense mRNA. Hum Gene Ther 11(14):2025–2037

    PubMed  CAS  Google Scholar 

  • Mebatsion T, Finke S, Weiland F, Conzelmann KK (1997) A CXCR4/CD4 pseudotype rhabdovirus that selectively infects HIV-1 envelope protein-expressing cells. Cell 90(5):841–847

    PubMed  CAS  Google Scholar 

  • Meera S, Madhuri T, Manisha G, Ramesh P (2010) Irreversible loss of pDCs by apoptosis during early HIV infection may be a critical determinant of immune dysfunction. Viral Immunol 23(3):241–249

    PubMed  CAS  Google Scholar 

  • Mendell JR, Campbell K, Rodino-Klapac L, Sahenk Z, Shilling C, Lewis S et al (2010) Dystrophin immunity in Duchenne’s muscular dystrophy. N Engl J Med 363(15):1429–1437

    PubMed  CAS  Google Scholar 

  • Mingozzi F, Hasbrouck NC, Basner-Tschakarjan E, Edmonson SA, Hui DJ, Sabatino DE et al (2007) Modulation of tolerance to the transgene product in a nonhuman primate model of AAV-mediated gene transfer to liver. Blood 110(7):2334–2341

    PubMed  CAS  Google Scholar 

  • Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM (1998) Development of a self-inactivating lentivirus vector. J Virol 72(10):8150–8157

    PubMed  CAS  Google Scholar 

  • Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C et al (2006) Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 24(6):687–696

    PubMed  CAS  Google Scholar 

  • Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC, Ranzani M et al (2009) The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 119(4):964–975

    PubMed  CAS  Google Scholar 

  • Morelli AE, Thomson AW (2007) Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol 7(8):610–621

    PubMed  CAS  Google Scholar 

  • Morris KV, Rossi JJ (2004) Anti-HIV-1 gene expressing lentiviral vectors as an adjunctive therapy for HIV-1 infection. Curr HIV Res 2(2):185–191

    PubMed  CAS  Google Scholar 

  • Morris KV, Gilbert J, Wong-Staal F, Gasmi M, Looney DJ (2004) Transduction of cell lines and primary cells by FIV-packaged HIV vectors. Mol Ther 10(1):181–190

    PubMed  CAS  Google Scholar 

  • Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272(5259):263–267

    PubMed  CAS  Google Scholar 

  • Naldini L (1998) Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr Opin Biotechnol 9(5):457–463

    PubMed  CAS  Google Scholar 

  • Nayak S, Herzog RW (2010) Progress and prospects: immune responses to viral vectors. Gene Ther 17(3):295-304

    Google Scholar 

  • Novina CD, Murray MF, Dykxhoorn DM, Beresford PJ, Riess J, Lee SK et al (2002) siRNA-directed inhibition of HIV-1 infection. Nat Med 8(7):681–686

    PubMed  CAS  Google Scholar 

  • Nowroozalizadeh S, Mansson F, da Silva Z, Repits J, Dabo B, Pereira C et al (2009) Studies on toll-like receptor stimuli responsiveness in HIV-1 and HIV-2 infections. Cytokine 46(3):325–331

    PubMed  CAS  Google Scholar 

  • Orchard PJ, Wagner JE (2011) Leukodystrophy and gene therapy with a dimmer switch. N Engl J Med 364(6):572–573

    PubMed  CAS  Google Scholar 

  • Pacanowski J, Kahi S, Baillet M, Lebon P, Deveau C, Goujard C et al (2001) Reduced blood CD123+ (lymphoid) and CD11c+ (myeloid) dendritic cell numbers in primary HIV-1 infection. Blood 98(10):3016–3021

    PubMed  CAS  Google Scholar 

  • Parker GA, Picut CA (2005) Liver immunobiology. Toxicol Pathol 33(1):52–62

    PubMed  CAS  Google Scholar 

  • Patterson S, Donaghy H, Amjadi P, Gazzard B, Gotch F, Kelleher P (2005) Human BDCA-1-positive blood dendritic cells differentiate into phenotypically distinct immature and mature populations in the absence of exogenous maturational stimuli: differentiation failure in HIV infection. J Immunol 174(12):8200–8209

    PubMed  CAS  Google Scholar 

  • Peretti S, Schiavoni I, Pugliese K, Federico M (2006) Selective elimination of HIV-1-infected cells by Env-directed, HIV-1-based virus-like particles. Virology 345(1):115–126

    PubMed  CAS  Google Scholar 

  • Pichlmair A, Diebold SS, Gschmeissner S, Takeuchi Y, Ikeda Y, Collins MK et al (2007) Tubulovesicular structures within vesicular stomatitis virus G protein-pseudotyped lentiviral vector preparations carry DNA and stimulate antiviral responses via Toll-like receptor 9. J Virol 81(2):539–547

    PubMed  CAS  Google Scholar 

  • Presicce P, Orsborn K, King E, Pratt J, Fichtenbaum CJ, Chougnet CA (2011) Frequency of circulating regulatory T cells increases during chronic HIV infection and is largely controlled by highly active antiretroviral therapy. PLoS One 6(12):e28118

    PubMed  CAS  Google Scholar 

  • Qin XF, An DS, Chen IS, Baltimore D (2003) Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci U S A 100(1):183–188

    PubMed  CAS  Google Scholar 

  • Riley JL, Schlienger K, Blair PJ, Carreno B, Craighead N, Kim D et al (2000) Modulation of susceptibility to HIV-1 infection by the cytotoxic T lymphocyte antigen 4 costimulatory molecule. J Exp Med 191(11):1987–1997

    PubMed  CAS  Google Scholar 

  • Rossetti M, Gregori S, Hauben E, Brown BD, Sergi LS, Naldini L et al (2011) HIV-1-derived lentiviral vectors directly activate plasmacytoid dendritic cells, which in turn induce the maturation of myeloid dendritic cells. Hum Gene Ther 22(2):177–188

    PubMed  CAS  Google Scholar 

  • Rouas R, Uch R, Cleuter Y, Jordier F, Bagnis C, Mannoni P et al (2002) Lentiviral-mediated gene delivery in human monocyte-derived dendritic cells: optimized design and procedures for highly efficient transduction compatible with clinical constraints. Cancer Gene Ther 9(9):715–724

    PubMed  CAS  Google Scholar 

  • Rowe HM, Lopes L, Ikeda Y, Bailey R, Barde I, Zenke M et al (2006) Immunization with a lentiviral vector stimulates both CD4 and CD8 T cell responses to an ovalbumin transgene. Mol Ther 13(2):310–319

    PubMed  CAS  Google Scholar 

  • Sabado RL, O’Brien M, Subedi A, Qin L, Hu N, Taylor E et al (2010) Evidence of dysregulation of dendritic cells in primary HIV infection. Blood 116(19):3839–3852

    PubMed  CAS  Google Scholar 

  • Salmon P, Arrighi JF, Piguet V, Chapuis B, Zubler RH, Trono D et al (2001) Transduction of CD34+ cells with lentiviral vectors enables the production of large quantities of transgene-expressing immature and mature dendritic cells. J Gene Med 3(4):311–320

    PubMed  CAS  Google Scholar 

  • Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110(4):521–529

    PubMed  CAS  Google Scholar 

  • Schroers R, Sinha I, Segall H, Schmidt-Wolf IG, Rooney CM, Brenner MK et al (2000) Transduction of human PBMC-derived dendritic cells and macrophages by an HIV-1-based lentiviral vector system. Mol Ther 1(2):171–179

    PubMed  CAS  Google Scholar 

  • Sevilla N, McGavern DB, Teng C, Kunz S, Oldstone MB (2004) Viral targeting of hematopoietic progenitors and inhibition of DC maturation as a dual strategy for immune subversion. J Clin Invest 113(5):737–745

    PubMed  CAS  Google Scholar 

  • Shimizu S, Hong P, Arumugam B, Pokomo L, Boyer J, Koizumi N et al (2010) A highly efficient short hairpin RNA potently down-regulates CCR5 expression in systemic lymphoid organs in the hu-BLT mouse model. Blood 115(8):1534–1544

    PubMed  CAS  Google Scholar 

  • Sinn PL, Burnight ER, Hickey MA, Blissard GW, McCray PB Jr (2005) Persistent gene expression in mouse nasal epithelia following feline immunodeficiency virus-based vector gene transfer. J Virol 79(20):12818–12827

    PubMed  CAS  Google Scholar 

  • Sioud M, Drlica K (1991) Prevention of human immunodeficiency virus type 1 integrase expression in Escherichia coli by a ribozyme. Proc Natl Acad Sci U S A 88(16):7303–7307

    PubMed  CAS  Google Scholar 

  • Sirven A, Pflumio F, Zennou V, Titeux M, Vainchenker W, Coulombel L et al (2000) The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood 96(13):4103–4110

    PubMed  CAS  Google Scholar 

  • Smed-Sorensen A, Lore K, Walther-Jallow L, Andersson J, Spetz AL (2004) HIV-1-infected dendritic cells up-regulate cell surface markers but fail to produce IL-12 p70 in response to CD40 ligand stimulation. Blood 104(9):2810–2817

    PubMed  Google Scholar 

  • Smed-Sorensen A, Lore K, Vasudevan J, Louder MK, Andersson J, Mascola JR et al (2005) Differential susceptibility to human immunodeficiency virus type 1 infection of myeloid and plasmacytoid dendritic cells. J Virol 79(14):8861–8869

    PubMed  Google Scholar 

  • Soumelis V, Scott I, Gheyas F, Bouhour D, Cozon G, Cotte L et al (2001) Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients. Blood 98(4):906–912

    PubMed  CAS  Google Scholar 

  • Steinman RM, Nussenzweig MC (2002) Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A 99(1):351–358

    PubMed  CAS  Google Scholar 

  • Stevenson M, Haggerty S, Lamonica CA, Meier CM, Welch SK, Wasiak AJ (1990) Integration is not necessary for expression of human immunodeficiency virus type 1 protein products. J Virol 64(5):2421–2425

    PubMed  CAS  Google Scholar 

  • Sun LQ, Wang L, Gerlach WL, Symonds G (1995) Target sequence-specific inhibition of HIV-1 replication by ribozymes directed to tat RNA. Nucleic Acids Res 23(15):2909–2913

    PubMed  CAS  Google Scholar 

  • Tan PH, Beutelspacher SC, Xue SA, Wang YH, Mitchell P, McAlister JC et al (2005) Modulation of human dendritic-cell function following transduction with viral vectors: implications for gene therapy. Blood 105(10):3824–3832

    PubMed  CAS  Google Scholar 

  • Tilton JC, Manion MM, Luskin MR, Johnson AJ, Patamawenu AA, Hallahan CW et al (2008) Human immunodeficiency virus viremia induces plasmacytoid dendritic cell activation in vivo and diminished alpha interferon production in vitro. J Virol 82(8):3997–4006

    PubMed  CAS  Google Scholar 

  • Tsui LV, Kelly M, Zayek N, Rojas V, Ho K, Ge Y et al (2002) Production of human clotting Factor IX without toxicity in mice after vascular delivery of a lentiviral vector. Nat Biotechnol 20(1):53–57

    PubMed  CAS  Google Scholar 

  • Vanham G, Penne L, Devalck J, Kestens L, Colebunders R, Bosmans E et al (1999) Decreased CD40 ligand induction in CD4 T cells and dysregulated IL-12 production during HIV infection. Clin Exp Immunol 117(2):335–342

    PubMed  CAS  Google Scholar 

  • Veron P, Boutin S, Bernard J, Danos O, Davoust J, Masurier C (2006) Efficient transduction of monocyte- and CD34+-derived Langerhans cells with lentiviral vectors in the absence of phenotypic and functional maturation. J Gene Med 8(8):951–961

    PubMed  CAS  Google Scholar 

  • Vigna E, Naldini L (2000) Lentiviral vectors: excellent tools for experimental gene transfer and promising candidates for gene therapy. J Gene Med 2(5):308–316

    PubMed  CAS  Google Scholar 

  • Westerhout EM, Ooms M, Vink M, Das AT, Berkhout B (2005) HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Res 33(2):796–804

    PubMed  CAS  Google Scholar 

  • White SM, Renda M, Nam NY, Klimatcheva E, Zhu Y, Fisk J et al (1999) Lentivirus vectors using human and simian immunodeficiency virus elements. J Virol 73(4):2832–2840

    PubMed  CAS  Google Scholar 

  • Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300(5626):1749–1751

    PubMed  CAS  Google Scholar 

  • Yang L, Bailey L, Baltimore D, Wang P (2006) Targeting lentiviral vectors to specific cell types in vivo. Proc Natl Acad Sci U S A 103(31):11479–11484

    PubMed  CAS  Google Scholar 

  • Ye Z, Harmison GG, Ragheb JA, Schubert M (2005) Targeted infection of HIV-1 Env expressing cells by HIV(CD4/CXCR4) vectors reveals a potential new rationale for HIV-1 mediated down-modulation of CD4. Retrovirology 2:80

    PubMed  Google Scholar 

  • Yonkers NL, Rodriguez B, Asaad R, Lederman MM, Anthony DD (2011) Systemic immune activation in HIV infection is associated with decreased MDC responsiveness to TLR ligand and inability to activate naive CD4 T-cells. PLoS One 6(9):e23884

    PubMed  CAS  Google Scholar 

  • Zennou V, Petit C, Guetard D, Nerhbass U, Montagnier L, Charneau P (2000) HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101(2):173–185

    PubMed  CAS  Google Scholar 

  • Zhou C, Bahner IC, Larson GP, Zaia JA, Rossi JJ, Kohn EB (1994) Inhibition of HIV-1 in human T-lymphocytes by retrovirally transduced anti-tat and rev hammerhead ribozymes. Gene 149(1):33–39

    PubMed  CAS  Google Scholar 

  • Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15(9):871–875

    PubMed  CAS  Google Scholar 

  • Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L et al (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72(12):9873–9880

    PubMed  CAS  Google Scholar 

  • Zufferey R, Donello JE, Trono D, Hope TJ (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73(4):2886–2892

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Scarlatti M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rossetti, M., Cavarelli, M., Gregori, S., Scarlatti, G. (2012). HIV-Derived Vectors for Gene Therapy Targeting Dendritic Cells. In: Wu, L., Schwartz, O. (eds) HIV Interactions with Dendritic Cells. Advances in Experimental Medicine and Biology, vol 762. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4433-6_9

Download citation

Publish with us

Policies and ethics