Skip to main content

Synthetic Morphogens and Pro-morphogens for Aided Tissue Regeneration

  • Chapter
  • First Online:
Biologically Responsive Biomaterials for Tissue Engineering

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 1))

Abstract

Knowledge deriving from the biochemical signalling controlling tissue morphogenesis in embryonic and adult tissues offers the potential for the development of new therapeutic tools in regenerative medicine. To facilitate and control the cell-to-cell communication pathways, peptides and polymers can be synthesised that are capable of exposing to the damaged tissue either specific cell bioligands or functional groups able to bind bioactive molecules. These macromolecules would thus act as biomimetic pro-morphogens contributing to the generation of biochemical signalling gradients. In the first case, biomaterial scaffolds would be tethered with bioligands specifically encouraging the colonisation of “intermediate organisers” able to process morphogens/growth factors secreted by the “organiser” cells. In the second case, the exposure of functional groups of natural or synthetic origin able to capture endogenous morphogens could contribute to the establishment of biochemical gradients. Finally, in the clinical cases where tissue regeneration potential has significantly been comporomise, the use of these so-called synthetic pro-morphogens could be combined with that of specific peptidic growth factor analogues to generate ex novo completely synthetic gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kerszberg M, Wolpert L (1998) J Theor Biol 191:103–114

    Article  CAS  Google Scholar 

  2. Vincent JP, Briscoe J (2001) Morphogens. Curr Biol 11:R851–R854

    Article  CAS  Google Scholar 

  3. Kornberg TB, Guha A (2007) Understanding morphogen gradients: a problem of dispersion and containment. Curr Opin Genet Dev 17:264–271

    Article  CAS  Google Scholar 

  4. Wolpert L (2011) Positional information and patterning revisited. J Theor Biol 269:359–365

    Article  Google Scholar 

  5. Reddi A (1997) Bone morphogenetic proteins: an unconventional approach to isolation of first mammalian morphogens. Cytokine Growth Factor Rev 8(11):20

    Google Scholar 

  6. Pagès F, Kerridge S (2000) Trends Genet 16:40–44

    Article  Google Scholar 

  7. Yan D, Lin X (2009) Shaping morphogen gradients by proteoglycans. Cold Spring Harb Perspect Biol 1(3):a002493

    Article  Google Scholar 

  8. Ibanes M, Belmonte JCI (2008) Theoretical and experimental approaches to understand morphogen gradients. Mol Syst Biol 2008:176

    Google Scholar 

  9. Gregor T, Tank DW, Wieschaus EF, Bialek W (2007) Cell 130:153–164

    Article  CAS  Google Scholar 

  10. Kerszberg M (2004) Curr Opin Genet Dev 14:440–445

    Article  CAS  Google Scholar 

  11. Zhu AJ, Scott MP (2004) Genes Dev 18:2985–2997

    Article  CAS  Google Scholar 

  12. Lander AD, Nie Q, Wan FY (2002) Dev Cell 2:785–796

    Article  CAS  Google Scholar 

  13. Kerszberg M, Wolpert L (2007) Specifying positional information in the embryo: looking beyond morphogens. Cell 130:205–209

    Article  CAS  Google Scholar 

  14. Wolpert L, Jessell T, Lawrence P, Meyerowitz E, Robertson E, Smith J (2006) Principles of development, 3rd edn. Oxford University Press, New York, p 24

    Google Scholar 

  15. Green JBA, Smith JC (1991) Growth factors as morphogens. Trends Genet 7:245–250

    CAS  Google Scholar 

  16. Esteve P, Bovolenta P (2006) Secreted inducers in vertebrate eye development: more functions for old morphogens. Curr Opin Neurobiol 16:13–19

    Article  CAS  Google Scholar 

  17. Zou Y, Lyuksyutova AI (2007) Morphogens as conserved axon guidance cues. Curr Opin Neurobiol 17:22–28

    Article  CAS  Google Scholar 

  18. Santin M (2009) Towards high-performance and industrially-sustainable tissue engineering products (Chapter 16). In: Santin M (ed) Strategies in regenerative medicine: integrating biology with material science. Springer, New York, pp 467–493, ISBN-10: 0387746595, ISBN-13: 9780387746593

    Google Scholar 

  19. Hodde JP, Johnson CE (2007) Extracellular matrix as a strategy for treating chronic wounds. Am J Clin Dermatol 8:61–66

    Article  Google Scholar 

  20. Werner S, Krieg T, Smola H (2007) Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol 127:998–1008

    Article  CAS  Google Scholar 

  21. Li HH, Fu XB, Zhang L, Huang QJ, Wu ZG, Sun TZ (2008) Research of PDGF-BB gel on the wound healing of diabetic rats and its pharmacodynamics. J Surg Res 145:41–48

    Article  CAS  Google Scholar 

  22. Lee SH, Shin H (2007) Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev 59:339–359

    Article  CAS  Google Scholar 

  23. Lal S, Barrow RE, Wolf SE, Chinkes DL, Hart DW, Heggers JP et al (2000) Biobrane improves wound healing in burned children without increased risk of infection. Shock 14:314–318

    Article  CAS  Google Scholar 

  24. Lukish JR, Eichelberger MR, Newman KD et al (2001) The use of bioactive skin substitute decreases length of stay for pediatric burn patients. J Pediatr Surg 36:1118–1121

    Article  CAS  Google Scholar 

  25. Unezaki S, Yoshii S, Mabuchi T, Saito A, Ito S (2009) Effects of neurotropic factors on nerve regeneration monitored by in vivo imaging in thy1-YFP transgenic mice. J Neoursci Methods 178:308–315

    Article  CAS  Google Scholar 

  26. Piquilloud G, Christen T, Pfister LA, Gander B, Papaloizos Y (2007) Variations in glial cell line-derived neurotrophic factor release from biodegradable nerve conduits modify the rate of functional motor recovery after rat primary nerve repairs. Eur J Neurosci 26:1109–1117

    Article  Google Scholar 

  27. Barras FM, Pasche P, Bouche N, Aebischer P, Zurn AD (2002) Glial cell line-derived neurotrophic factor released by synthetic guidance channels promotes facial nerve regeneration in the rat. J Neurosci Res 70:746–755

    Article  CAS  Google Scholar 

  28. Seeherman H, Wozney JM (2005) Delivery of bone morphogenetic proteins for orthopedic tissue regeneration. Cytokine Growth Factor Rev 16:329–345

    Article  CAS  Google Scholar 

  29. Kelpke SS, Zinn KR, Rue LW, Thompson JA (2004) Site-specific delivery of acidic fibroblast growth factor stimulates angiogenic and osteogenic response in vivo. J Biomed Mater Res A 71A:316–325

    Article  CAS  Google Scholar 

  30. Mabilleau G, Aguado E, Stancu IC, Cincu C, Basle ME, Chappard D (2008) Effects of FGF-2 release from a hydrogel polymer on bone mass and microarchitecture. Biomaterials 29:1593–1600

    Article  CAS  Google Scholar 

  31. Schmoekel HG, Weber FE, Schense JC, Gratz KW, Schawalder P, Hubbell JA (2005) Bone repair with a form of BMP-2 engineered for incorporation into fibrin cell ingrowth matrices. Biotechnol Bioeng 89(3):253–262

    Article  CAS  Google Scholar 

  32. Jeon O, Song SJ, Kang SW, Putnam AJ, Kim BS (2007) Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold. Biomaterials 28:2763–2771

    Article  CAS  Google Scholar 

  33. Molek P, Strukelj B, Bratkovic T (2011) Peptide phage display as a tool for drug discovery: targeting membrane receptors. Molecules 16:857–887

    Article  CAS  Google Scholar 

  34. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    Article  CAS  Google Scholar 

  35. Smith GP, Petrenko VA (1997) Phage display. Chem Rev 97:391–410

    Article  CAS  Google Scholar 

  36. Ja WW, Roberts RW (2005) G-protein-directed ligand discovery with peptide combinatorial libraries. Trends Biochem Sci 20:318–324

    Article  Google Scholar 

  37. Tipps ME, Lawshe JE, Ellington AD, Mihic SJ (2010) Identification of novel specific allosteric modulators of the glycine receptor using phage display. J Biol Chem 285:22840–22845

    Article  CAS  Google Scholar 

  38. De Berardinis P, Haigwood N (2004) New recombinant vaccines based on the use of prokaryotic antigen-display systems. Expert Rev Vaccines 3:673

    Article  Google Scholar 

  39. Skerra A (2007) Alternative non-antibody scaffolds for molecular recognition. Curr Opin Biotechnol 18:295–304

    Article  CAS  Google Scholar 

  40. Hertveldt K, Belien T, Volckaert G (2009) General M13 phage display: M13 phage display in indentification and characterization of protein-protein interactions. Methods Mol Biol 502:321–339

    Article  CAS  Google Scholar 

  41. Sedlacek R, Chen E (2005) Screening for protease substrate by polyvalent phage display. Comb Chem High Throughput Screen 8:197–203

    Article  CAS  Google Scholar 

  42. Fernandez-Gacio A, Uguen M, Fastrez J (2003) Phage display as a tool for the directed evolution of enzymes. Trends Biotechnol 21:408–414

    Article  CAS  Google Scholar 

  43. Deller MC, Jones YE (2000) Cell surface receptors. Curr Opin Struct Biol 10:213–219

    Article  CAS  Google Scholar 

  44. Yamada N, Yanai R, Kawamoto K, Takashi Nagano T, Nakamura M, Inui M, Nishida T (2006) Promotion of corneal epithelial wound healing by a tetrapeptide (SSSR) derived from IGF-1. Invest Ophthalmol Vis Sci 47:3286–3292

    Article  Google Scholar 

  45. Brennand DM, Dennehy U, Ellis V, Scully MF, Tripathi P, Kakkar VV, Patel G (1997) Identification of a cyclic peptide inhibitor of platelet-derived growth factor-BB receptor-binding and mitogen-induced DNA synthesis in human fibroblasts. FEBS Lett 413:70–74

    Article  CAS  Google Scholar 

  46. Hardy B, Raiter A, Weiss C, Kaplan B, Tenenbaum A, Battler A (2007) Angiogenesis induced by novel peptides selected from a phage display library by screening human vascular endothelial cells under different physiological conditions. Peptides 28:691–701

    Article  CAS  Google Scholar 

  47. D’Andrea LD, Del Gatto A, Pedone C, Benedetti E (2006) Peptide-based molecules in angiogenesis. Chem Biol Drug Des 67:115–126

    Article  Google Scholar 

  48. Suzuki Y, Tanihara M, Suzuki K, Saitou A, Sufan W, Nishimura Y (2000) Alginate hydrogel linked with synthetic oligopeptide derived from BMP-2 allows ectopic osteoinduction in vivo. J Biomed Mater Res 50:405–409

    Article  CAS  Google Scholar 

  49. Horii A, Wang X, Gelain F, Zhang S (2007) Biological designer self-assembling peptide nanofibre scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. PLoS One 2(2):E190. doi:10.1371/journal.pone.0000190

    Article  Google Scholar 

  50. Simoes DCM, Vassilakopoulos T, Toumpanakis D, Petrochilou K, Roussos C, Papapetropoulos A (2008) Angiopoietin-1 protects against airway inflammation and hyperreactivity in asthma. Am J Respir Critic Care Med 177:1314–1321

    Article  CAS  Google Scholar 

  51. Smadja DM, Laurendeau I, Avignon C, Vidaud M, Aiach M, Gaussem P (2006) The angiopoietin pathway is modulated by PAR-1 activation on human endothelial progenitor cells. J Thromb Haemost 4:2051–2058

    Article  CAS  Google Scholar 

  52. Pollock JF, Healy KE (2009) Biomimetic and bioresponsive materials in regenerative medicine (Chapter 4). In: Santin M (ed) Strategies in regenerative medicine: integrating biology with material science. Springer, New York, pp 97–154, ISBN-10: 0387746595, ISBN-13: 9780387746593

    Google Scholar 

  53. Hern DL, Hubbell JA (1998) Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J Biomed Mater Res 39:266–276

    Article  CAS  Google Scholar 

  54. Schense JC, Hubbell JA (2000) Three-dimensional migration of neurites is mediated by adhesion site density and affinity. J Biol Chem 275:6813–6818

    Article  CAS  Google Scholar 

  55. Shin H, Jo S, Mikos AG (2002) Modulation of marrow stromal osteoblast adhesion on biomimetic oligo[poly(ethylene glycol) fumarate] hydrogels modified with Arg-Gly-Asp peptides and a poly(ethyleneglycol) spacer. J Biomed Mater Res 61:169–179

    Article  CAS  Google Scholar 

  56. Harbers GM, Healy KE (2005) The effect of ligand type and density on osteoblast adhesion, proliferation, and matrix mineralization. J Biomed Mater Res A 75:855–869

    Google Scholar 

  57. Brandley BK, Schnaar RL (1988) Covalent attachment of an Arg-Gly-Asp sequence peptide to derivatizable polyacrylamide surfaces: support of fibroblast adhesion and long-term growth. Anal Biochem 172:270–278

    Article  CAS  Google Scholar 

  58. Shin H, Zygourakis K, Farach-Carson MC et al (2004) Attachment, proliferation, and migration of marrow stromal osteoblasts cultured on biomimetic hydrogels modified with an osteopontin-derived peptide. Biomaterials 25:895–906

    Article  Google Scholar 

  59. Rezania A, Healy KE (1999) Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-like cells. Biotechnol Prog 15:19–32

    Article  CAS  Google Scholar 

  60. Silva GA, Czeisler C, Niece KL et al (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355

    Article  CAS  Google Scholar 

  61. Schense JC, Bloch J, Aebischer P et al (2000) Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension. Nat Biotechnol 18:415–419

    Article  CAS  Google Scholar 

  62. Nilsson F, Tarli L, Viti F, Neri D (2000) The use of phage display for the development of tumour targeting agents. Adv Drug Deliv Rev 43:165–196

    Article  CAS  Google Scholar 

  63. Ivanenkov VV, Felici F, Menon AG (1999) Uptake and intracellular fate of phage display vectors in mammalian cells. Biochim Biophys Acta 1448:450–462

    Article  CAS  Google Scholar 

  64. Stacey A, Palasek ZJ, Cox ZJ, Collins JM (2007) Limiting racemization and aspartimide formation in microwave-enhanced Fmoc solid phase peptide synthesis. J Pept Sci 13:143–148

    Article  Google Scholar 

  65. Skerra A (2000) Engineered protein scaffolds for molecular recognition. J Mol Recognit 13:167–187

    Article  CAS  Google Scholar 

  66. Wurch T, Lowe P, Caussanel V, Bes C, Beck A, Corvaia N (2008) Development of novel protein scaffolds as alternatives to whole antibodies for imaging and therapy: status on discovery research and clinical validation. Curr Pharm Biotechnol 9:502–509

    Article  CAS  Google Scholar 

  67. Duncan R, Izzo L (2005) Dendrimer biocompatibility and doxicity. Adv Drug Deliv Rev 57:2215–2237

    Article  CAS  Google Scholar 

  68. Esfand T (2001) Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 6:427–436

    Article  CAS  Google Scholar 

  69. Hobson LJ, Feast WJ (1999) Poly(amidoamine) hyperbranched systems: synthesis, structure and characterization. Polymer 40:1279–1297

    Article  CAS  Google Scholar 

  70. Wells NJ, Basso A, Bradley M (1999) Solid-phase dendrimer synthesis. Biopolymers 47:381–396

    Article  Google Scholar 

  71. Al Jamal KT, Ramaswamy C, Florence AT (2005) Supramolecular structures from dendrons and dendrimers. Adv Drug Deliv Rev 57:2238–2270

    Article  CAS  Google Scholar 

  72. Tang MX, Redemann CT, Szoka FC (1996) In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem 7:703–714

    Article  CAS  Google Scholar 

  73. Monaghan S (2001) Solid-phase synthesis of peptide-dendrimer conjugates for an investigation of integrin binding. ARKIVOC 46–53

    Google Scholar 

  74. Wijelath E, Namekata M, Murray J, Furuyashiki M, Zhang S, Coan D, Wakao M, Harris RB, Suda Y, Wang LM (2010) Multiple mechanisms for exogenous heparin modulation of vascular endothelial growth factor activity. J Cell Biochem 111:461–468

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Santin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Santin, M. (2013). Synthetic Morphogens and Pro-morphogens for Aided Tissue Regeneration. In: Antoniac, I. (eds) Biologically Responsive Biomaterials for Tissue Engineering. Springer Series in Biomaterials Science and Engineering, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4328-5_3

Download citation

Publish with us

Policies and ethics