Skip to main content

Longitudinal Data Analysis

  • Chapter
  • First Online:
Modern Clinical Trial Analysis

Abstract

Longitudinal studies are quite common in modern clinical trials and cohort studies. Unlike cross-sectional designs, where observations from study subjects are available only at a single time point, individuals in longitudinal or cohort studies are assessed repeatedly over time. By taking advantages of multiple snapshots of a group over time, data from longitudinal studies captures both between-individual differences and within-individual dynamics, affording the opportunity to study more complicated biological, psychological, and behavioral hypotheses than their cross-sectional counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birmingham J, Fitzmaurice G (2002) A pattern-mixture model for longitudinal binary responses with nonignorable nonresponse. Biometrics 58(4):989–996

    Article  PubMed  Google Scholar 

  2. Breslow N, Clayton D (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc, 88:9–25

    Article  Google Scholar 

  3. Bryk A, Raudenbush S, Congdon R (1996) HLM: Hierarchical linear and nonlinear modeling with the HLM/2L and HLM/3L programs. Scientific Software International, Lincolnwood, IL

    Google Scholar 

  4. Crowder M (1995). On the use of a working correlation matrix in using generalised linear models for repeated measures. Biometrika 82(2):407–410

    Article  Google Scholar 

  5. Davidian M, Gallant A (1993) The nonlinear mixed effects model with a smooth random effects density. Biometrika 80(3):475–488

    Article  Google Scholar 

  6. Degruttola V, Tu XM (1994) Modeling progression of cd4-lymphocyte count and its relationship to survival-time. Biometrics 50(4):1003–1014

    Article  CAS  Google Scholar 

  7. Demidenko E (2004) Mixed models: theory and applications, vol 518. LibreDigital, Austin, TX

    Book  Google Scholar 

  8. Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the em algorithm. J Roy Stat Soc B 39(1):1–38

    Google Scholar 

  9. Diggle PJ, Heagerty PJ, Liang K-Y, Zeger SL (2002) Analysis of longitudinal data, 2nd edn. Oxford statistical science series, vol 25. Oxford University Press, Oxford

    Google Scholar 

  10. Feng C, Su H, Wang H, Tang W, Yu Q, Tu XM (2009) Testing normality for longitudinal studies with missing data. Far East J Theor Stat 28(2):133–155

    Google Scholar 

  11. Follmann D, Wu M (1995) An approximate generalized linear model with random effects for informative missing data. Biometrics, 51:151–168

    Article  PubMed  CAS  Google Scholar 

  12. Goldstein H (1987) Multilevel models in education and social research. Charles Griffin & Co, London, England; Oxford University Press, New York

    Google Scholar 

  13. Goldstein H (1995) Hierarchical data modeling in the social sciences. J Educ Behav Stat 20(2): 201–204

    Google Scholar 

  14. Hogan J, Laird N (1997) Mixture models for the joint distribution of repeated measures and event times. Stat Med 16(3):239–257

    Article  PubMed  CAS  Google Scholar 

  15. Kowalski J, Tu XM (2008) Modern applied U-statistics. Wiley series in probability and statistics. Wiley-Interscience, Hoboken, NJ

    Google Scholar 

  16. Laird N, Ware J (1982) Random-effects models for longitudinal data. Biometrics, 38:963–974

    Article  PubMed  CAS  Google Scholar 

  17. Lindstrom M, Bates D (1988) Newton-raphson and em algorithms for linear mixed-effects models for repeated-measures data. J Am Stat Assoc, 83:1014–1022

    Google Scholar 

  18. Lu NJ, Tang W, He H, Yu Q, Crits-Christoph P, Zhang H, Tu X (2009) On the impact of parametric assumptions and robust alternatives for longitudinal data analysis. Biom J 51(4):627–643

    Article  PubMed  Google Scholar 

  19. Lubetkin E, Jia H, Gold M (2003) Use of the SF-36 in low-income Chinese American primary care patients. Medical Care 41(4):447–457

    PubMed  Google Scholar 

  20. Meng XL, Van Dyk D (1997) The em algorithm—an old folk-song sung to a fast new tune. J Roy Stat Soc B Stat Meth 59(3):511–567

    Article  Google Scholar 

  21. Pinheiro J, Bates D (2000) Mixed-effects models in S and S-PLUS. Springer, Berlin

    Book  Google Scholar 

  22. R Development Core Team (2011) R: A language and environment for statistical computing. R doundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0

    Google Scholar 

  23. Rasbash J, Steele F, Browne W, Goldstein H (2009) A User’s Guide to MLwiN, v2.10. Centre for Multilevel Modelling, University of Bristol

    Google Scholar 

  24. Raudenbush S, Bryk A (2002) Hierarchical linear models: Applications and data analysis methods, vol 1. Sage Publications, Thousand Oaks, CA

    Google Scholar 

  25. Raudenbush S, Bryk A, Congdon R (2007) Hlm for windows (version 6.04)[computer software]. Scientific Software International, Lincolnwood, IL

    Google Scholar 

  26. SAS Institute (2011) Base SAS 9.3 procedures guide. SAS Institute, Cary, NC

    Google Scholar 

  27. Schabenberger O, Gregoire T (1996) Population-averaged and subjectspecific approaches for clustered categorical data. J Stat Comput Simulat 54(1-3):231–253

    Article  Google Scholar 

  28. Seber G (1984) Multivariate observations, vol 41. Wiley Online Library, Hoboken, NJ

    Book  Google Scholar 

  29. Shults J, Sun WG, Tu X, Kim H, Amsterdam J, Hilbe A, Ten-Have T (2009) A comparison of several approaches for choosing between working correlation structures in generalized estimating equation analysis of longitudinal binary data. Stat Med 28(18):2338–2355

    Article  PubMed  Google Scholar 

  30. SPSS Inc. (2009) SPSS base 17.0 for Windows User’s Guide. SPSS Inc., Chicago IL

    Google Scholar 

  31. StataCorp (2011). Stata statistical software: release 12. StataCorp LP: StataCorp, College Station, TX

    Google Scholar 

  32. Strenio J, Weisberg H, Bryk A (1983) Empirical bayes estimation of individual growth-curve parameters and their relationship to covariates. Biometrics, 39:71–86

    Article  PubMed  CAS  Google Scholar 

  33. Tan M, Fang H-B, Tian GL, Wei G (2005) Testing multivariate normality in incomplete data of small sample size. J Multivariate Anal 93(1):164–179

    Article  Google Scholar 

  34. Tang W, He H, Tu X (2012) Applied categorical and count data analysis. Chapman & Hall/CRC, London/Boca Raton

    Google Scholar 

  35. Tsiatis A, Davidian M (2004) Joint modeling of longitudinal and time-to-event data: an overview. Statistica Sinica 14(3):809–834

    Google Scholar 

  36. Tsiatis AA (2006) Semiparametric theory and missing data. Springer series in statistics. Springer, New York

    Google Scholar 

  37. Wan C, Gao L, Li X et al. (2005) Development of the general module for the system of quality of life instruments for patients with chronic disease: items selection and structure of the general module[j]. Chin Ment Health J 11:444–447

    Google Scholar 

  38. Wan C, Tu X, Messing S, Li X, Yang Z, Zhao X, Gao L, Yang Y, Pan J, Zhou Z (2011) Development and validation of the general module of the system of quality of life instruments for chronic diseases and its comparison with sf-36. J Pain Symptom Manag 42:93–104

    Article  Google Scholar 

  39. Wan C, Yang Z, Yang Y (2007) Development of the general module of the system of quality of life instruments for patients with chronic disease: Evaluation of the general module. Chinese J Behavior Medical Sci 16:559–561

    Google Scholar 

  40. Wolfinger R, O’connell M (1993) Generalized linear mixed models a pseudo-likelihood approach. J Stat Comput Simulat 48(3–4):233–243

    Article  Google Scholar 

  41. Zeger S, Liang K, Albert P (1988) Models for longitudinal data: a generalized estimating equation approach. Biometrics, 44:1049–1060

    Article  PubMed  CAS  Google Scholar 

  42. Zhang H, Lu N, C, Feng S, Thurston Y, Xia L, Zhu, and Tu X (2011a). On fitting generalized linear mixed-effects models for binary responses using different statistical packages. Stat Med 30, 2562–2572

    Google Scholar 

  43. Zhang H, Xia Y, R, Chen D, Gunzler W, Tang, and Tu X (2011b). Modeling longitudinal binomial responses: implications from two dueling paradigms. J Appl Stat 38:2373–2390

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tang, W., Lu, N., Chen, R., Zhang, H. (2012). Longitudinal Data Analysis. In: Tang, W., Tu, X. (eds) Modern Clinical Trial Analysis. Applied Bioinformatics and Biostatistics in Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4322-3_2

Download citation

Publish with us

Policies and ethics