Skip to main content

1930–1940: A Dazzling Development

  • Chapter
  • First Online:
Unravelling the Mystery of the Atomic Nucleus
  • 1059 Accesses

Abstract

The physics of the atomic nucleus becomes a primary concern of physicists. One Russian and two Americans show how the recent quantum mechanics can explain an enigma in α-decay: the Geige-Nuttall law. A Frenchman discovers that α-particles emitted by radioactive substances do not all have the same velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See p. 214.

  2. 2.

    See p. 58.

  3. 3.

    ThC is the isotope 212 of bismuth, 212 83Bi.

  4. 4.

    See p. 160.

  5. 5.

    See p. 58.

  6. 6.

    See p. 204.

  7. 7.

    Namely, three isotopes of bismuth, 214 83Bi, 212 83Bi, and 211 83Bi.

  8. 8.

    The Zeeman effect is a splitting of atomic spectral lines when the atom is subject to an external magnetic field. The reason is that the magnetic field modifies the motion of the electrons in the atom. See p. 101.

  9. 9.

    See p. 213.

  10. 10.

    Recall that the chemical measurements yield relative values of the atomic masses: 8 g of oxygen and 1 g of hydrogen are required to form 9 g of water. Since one knows that each molecule of water contains one oxygen atom and two hydrogen atoms, one deduces that the oxygen atom is 16 times heavier than the hydrogen atom. With similar methods, the relative masses of other atoms can be determined.

  11. 11.

    This is a molecule consisting of two hydrogen nuclei bound by a single electron. It is produced when an ordinary hydrogen molecule loses one of its electrons.

  12. 12.

    The same principle is applied when alcohol is obtained from the distillation of wine: the alcohol is lighter, and it evaporates first.

  13. 13.

    See p. 216.

  14. 14.

    See p. 197.

  15. 15.

    See p. 192.

  16. 16.

    The École Municipale de Physique et de Chimie Industrielle was founded in 1882. Its name was changed to École Supérieure de Physique et de Chimie Industrielle (ESPCI) in 1948.

  17. 17.

    We respect the original notation. Today, we would write 4.7 cm.

  18. 18.

    An electromagnetic field does not really eliminate electrons. Instead, it deviates them by making them follow circular trajectories which have very small radii in view of the small electron mass. The electrons continue going round and round and therefore remain close to their starting point. They do not reach detectors placed further away.

  19. 19.

    In 1932 the mass unit for atoms was 1/16 of the mass of oxygen, which was taken as reference.

  20. 20.

    Thorium C” is the isotope 208 of thallium, which today is denoted as 208Tl.

  21. 21.

    The value accepted today is 1.0089856 in units of that time equal to 1/16 of the mass of oxygen.

  22. 22.

    See p. 217.

  23. 23.

    At that time, the atomic mass unit was 1/16 of the mass of oxygen.

  24. 24.

    See p. 215.

  25. 25.

    See p. 136.

  26. 26.

    See p. 199.

  27. 27.

    See p. 116.

  28. 28.

    See p. 18.

  29. 29.

    See p. 20.

  30. 30.

    See p. 26.

  31. 31.

    Today’s data make it “only” 12.7 times smaller.

  32. 32.

    The CNRS stands for Centre National de Recherche Scientifique. It is one of the major research organizations in France.

  33. 33.

    See p. 27.

  34. 34.

    See p. 5.

  35. 35.

    See p. 31.

  36. 36.

    In 1941, Christian Møller coined the word “nucleon” to designate both protons and neutrons, see p. 425.

  37. 37.

    See p. 209.

  38. 38.

    Indeed, the earth contains some uranium and therefore radium and therefore also radon, the residue of the disintegration of radium. Since radon is a gas, it is continuously escaping from the earth. There is more of it in granitic regions which are richer in uranium. The radioactive half-life of radon is 3.8 days.

  39. 39.

    See p. 212.

  40. 40.

    See p. 206.

  41. 41.

    See page 209.

  42. 42.

    See p. 135.

  43. 43.

    See p. 215.

  44. 44.

    The protons are 1,836 times heavier than electrons, and the curvature of their trajectory is therefore 1,836 times smaller.

  45. 45.

    See p. 22.

  46. 46.

    See p. 188.

  47. 47.

    See p. 158.

  48. 48.

    See p. 3.

  49. 49.

    Wideröe was Norwegian, Tuve and Lawrence had Norwegian parents or grandparents, and Ising was Swedish. Scandinavia played a key role in the construction of the first accelerators!

  50. 50.

    It was a letter to the editor, signed by E. Lawrence and S. Livingston. Urgent communications could be sent to the journal provided they were short. They were published fast, within about 1 month, whereas 6 months were often required for the publication of a full-fledged article.

    Similar fast publications were accepted by Nature in England, by Physikalische Zeitschrift and Naturwissenschaften in Germany, and by the Comptes Rendus de l’Académie des Sciences in France.

  51. 51.

    We did not wish to modify the text of Lawrence who mentions millions of volts instead of electron volts. It is an abuse which physicists often indulge in (see the word in the Glossary).

  52. 52.

    See p. 27.

  53. 53.

    See p. 34.

  54. 54.

    See p. 56.

  55. 55.

    See p. 9.

  56. 56.

    The highest competitive examination for teachers in France.

  57. 57.

    See p. 26.

  58. 58.

    Respectively, 13 and 14 for aluminum, 2 and 2 for the α -particle, and 14 and 16 for the isotope 30 of silicon.

  59. 59.

    Ionized hydrogen atoms, namely, protons, were still occasionally called H-rays at the time.

  60. 60.

    These are Wilson cloud chamber photographs.

  61. 61.

    See p. 57.

  62. 62.

    This method, which is widely used in chemistry and in biology, is called today the “labelled molecules” or “tracer” method.

  63. 63.

    See p. 155.

  64. 64.

    Later it was found that “radium D” was the isotope 210 of lead, which today is denoted as 82 210Pb.

  65. 65.

    See p. 132.

  66. 66.

    See p. 215.

  67. 67.

    See p. 9.

  68. 68.

    See p. 177 to 185.

  69. 69.

    See p. 217.

  70. 70.

    See p. 202.

  71. 71.

    See p. 78.

  72. 72.

    They did this by fixing the substance to a fast rotating disc. The latter was then bombarded tangentially by neutrons. This enabled them to vary the relative velocity of the neutrons and the target nuclei within a certain range.

  73. 73.

    At a temperature of 20C, thermal neutrons have velocities ranging from about 1000 to 4000 m/s, the average velocity being 2200 m/s. However, neutrons emitted by neutron sources (such as the beryllium + radon source used by Fermi) have energies of several million electron volts (MeV). For example, 5-MeV neutrons have velocities of 31 000 km/s. They travel more than a thousand times faster than thermal neutrons.

  74. 74.

    See p. 53.

  75. 75.

    See p. 136.

  76. 76.

    See p. 183.

  77. 77.

    See p. 82.

  78. 78.

    Consider a proton interacting with a neutron. The proton begins by emitting a quantum (today, we would say “a particle”). The system then consists of the proton and the neutron with, in addition, the quantum (the particle) of mass M, which increases the energy of the system by the amount ΔE = Mc 2 where c is the speed of light. According to Heisenberg’s uncertainty principle, this change of energy cannot last longer than the time interval \(\Delta t = \hslash /\Delta E = \hslash /M{c}^{2}\) where is Planck’s constant h divided by 2π. This means that the quantum must be absorbed by the neutron at a time no later than Δt. During this time, the exchanged quantum cannot travel a distance greater than \(R = c\Delta t = \hslash /Mc\) because it cannot travel faster than light. The interaction between the proton and the neutron therefore has a range of the order of Mc which decreases as the mass of the exchanged quantum (particle) increases.

  79. 79.

    However, today, we know that the neutron has a magnetic moment in spite of having zero electric charge. The magnetic moment of the neutron allows it to interact with a magnetic field.

  80. 80.

    See p. 92.

  81. 81.

    See p. 100 for Franck and Hertz experiment.

  82. 82.

    See p. 56.

  83. 83.

    See p. 34.

  84. 84.

    See p. 93.

  85. 85.

    For those who are curious to see the formula, here it is:

    $$\sigma= {\Lambda }^{2}\pi S \frac{{\Gamma }_{s}\Gamma } {{\left (\nu- {\nu }_{0}\right )}^{2} + {\Gamma }^{2}}$$

    In this formula, σ is the cross section which is proportional to the probability of the process, Λ and S are constants, ν is the energy of the neutron, ν0 is the energy at which the resonance occurs, Γ is the width of the resonance which is the range of energies at which the process can occur with a high probability, and Γ s is proportional to the probability for the system to decay in certain fashion after the neutron capture.

  86. 86.

    But Bohr suggests that the same occurs when other particles, such as α-particles, come into contact with the nucleus.

  87. 87.

    Bohr uses the word “conservative,” which simply means that energy is conserved.

  88. 88.

    See p. 107.

  89. 89.

    See p. 40.

  90. 90.

    See p. 36.

  91. 91.

    Mark Oliphant was born in 1901 in Adelaide, Australia. In 1927, he joined Rutherford at the Cavendish Laboratory, where he received a PhD in 1929 and began nuclear research with Rutherford. In 1937, he became professor of Physics at Birmingham, and in 1939, he began to build a 60-inch cyclotron with the help of Ernest Lawrence. During the Second World War, he worked on radar and joined the Manhattan Project. After the war, he became a founding member of the Pugwash Movement. He returned to Australia in 1950 and became the research director of the Australian National University. He died in 2000.

  92. 92.

    See p. 12.

  93. 93.

    See p. 28.

  94. 94.

    See p. 199.

  95. 95.

    See p. 196.

  96. 96.

    See p. 100.

  97. 97.

    The book Nuclear forces, by David Brink (Pergamon Press, 1965), gives a very lucid account of the history and development of nuclear forces in the period 1932–1952. It contains a collection of 14 original papers by Bohr, Heisenberg, Wigner, Majorana, Yukawa, etc., and an introduction in which the ideas underlying the papers are discussed.

  98. 98.

    See p. 10.

  99. 99.

    For those who are curious, the exact formula for the quadrupole moment of a nucleus shaped as an ellipsoid, the principal axes of which are a and b, is \(Q = \frac{Ze} {10} ({a}^{2} - {b}^{2})\), where Z is the number of electric charges (therefore, the number of protons) and e the elementary electric charge, that is, the electric charge of the proton.

  100. 100.

    See p. 10.

  101. 101.

    See p. 105.

  102. 102.

    See p. 87.

  103. 103.

    This is what Hahn and Meitner call eka-iodine because it is a hole in the periodic table, which corresponds to a halogen element which is close to iodine for its chemical properties and which will not be observed before 1940. The prefix eka means 1 in Sanskrit, and it was used for the first time by Mendeleev in 1872 when he predicted elements which were not known at his time and for which he left blank positions in the periodic table. He gave them provisional names: eka-aluminum, eka-boron, and eka-silicon. These elements were discovered later: gallium in 1875, scandium in 1879, and germanium in 1886. By calling eka-aluminum the predicted element, Mendeleev wished to stress that an element, with properties similar to those of aluminum, should find a position in the same column of his table.

  104. 104.

    In 1943, in the midst of World War II, Strassmann and his wife Maria Heckter Strassmann saved the life of a Jewish woman, a 46-year-old pianist, Andrea Wolffenstein, by concealing her in their house in spite of the great risk involved [265]. This earned him recognition as a “Righteous Gentile” by Yad Vashem in Israel.

  105. 105.

    Which is the isotope 234 of thorium, 234 90Th.

  106. 106.

    These letters are published in Im Schatten der Sensation, Leben und Wirken von Fritz Straßmann, by Fritz Krafft [283].

  107. 107.

    At the time, Masurium was the name given to the element 43, which two young German chemists, Ida Tacke and Walter Noddack (who were to be married in 1926) thought they had identified in 1925 in a niobium mineral and to which they gave the name masurium, in honor of the region where Walter Noddack was born. However, their identification was put into doubt because the experiment could not be repeated. Since the experiments of Segrè and Perrier, which showed that the element 43, which they produced by bombarding molybdenum with deuterons, has no stable isotopes [292], we know that the isotope, whose radioactive half-life is the longest (61 days) is the isotope 95. It therefore cannot occur in nature. In 1949, the international union of pure and applied chemistry (IUPAC, which was formed in 1919 by chemists from industry and academia) decided to call it technetium to remind that it is an artificial element.

  108. 108.

    It is the letter, dated December 19, 1938, mentioned above on page 136.

  109. 109.

    Irène Curie became the first woman with the rank of Minister in France, while not even having the right to vote!

  110. 110.

    The CNRS (Centre National de Recherche Scientifique) is still today the major research institution in France.

  111. 111.

    See p. 123.

  112. 112.

    See p. 71 and p. 73.

  113. 113.

    The “compound nucleus” formed by uranium 235 and a neutron is the uranium 236 nucleus which has an even number of protons (92) and an even number of neutrons (144). Therefore, the binding energy of a neutron is larger for this nucleus: the neutron arrives on top a deeper potential well, and therefore, the 236 nucleus is in a more highly excited state, at an energy where the nuclear states are more densely spaced so that the neutron has a greater probability of finding a “host state” which allows it to form a compound nucleus. The opposite is true for the isotope 238 which, after absorbing a neutron, becomes the isotope 239 and which does not offer the neutron a state with exactly the energy required for it to be absorbed.

  114. 114.

    See p. 80.

  115. 115.

    See p. 25.

  116. 116.

    See p. 55.

  117. 117.

    See p. 30.

  118. 118.

    See p. 80.

  119. 119.

    See p. 152.

  120. 120.

    See p. 91.

  121. 121.

    See p. 88.

  122. 122.

    Jean Perrin was awarded the Nobel Prize in physics in 1926 “for his work on the discontinuous structure of matter, and especially for his discovery of sedimentation equilibrium”.

References

  1. Gamow, G., “Zur Quantentheorie der Atomkerne”, Zeitschrift für Physik 51, 204–212, 1928.

    Google Scholar 

  2. Gurney, R. W. and Condon, E. U., “Wave mechanics and radioactive decay”, Nature 122, 439, September 22, 1928.

    Google Scholar 

  3. Rosenblum, S., “Structure fine du spectre magnétique des rayons α du thorium C”, Comptes Rendus de l’Académie des Sciences 188, 1401–1403, session of May 27, 1929.

    Google Scholar 

  4. Cotton, A., “Le grand électro-aimant de l’Académie des Science”, Comptes Rendus de l’Académie des Sciences 187, 77–89, session of July 9, 1928.

    Google Scholar 

  5. Cotton, A. and Dupouy, G., “Champs magnétiques donnés par le grand électro-aimant de Bellevue”, Comptes Rendus de l’Académie des Sciences 190, 544–47, session of February 10, 1930.

    Google Scholar 

  6. Rosenblum, S., “Structure fine du spectre magnétique des rayons α”, Comptes Rendus de l’Académie des Sciences 188, 1549–1550, session of June 10, 1929, and 190, 1124–1127, session of May 12, 1930.

    Google Scholar 

  7. Rutherford, E., Chadwick, J. and Ellis, C. D., Radiations from Radioactive Substances, Cambridge University Press, London, 1931, note p. 47.

    Google Scholar 

  8. Rutherford, E., Ward, F. A. B. and Wynn-Williams, C. E., “A New Method of Analysis of Groups of Alpha-Rays (1) The Alpha-Rays from Radium C, Thorium C, and Actinium C”, Proceedings of the Royal Society, London A129, 211–234, 1930.

    Google Scholar 

  9. Rutherford, E., Ward, F. A. B. and Lewis, W. B., “Analysis of the Long Range α-Particles from Radium C”, Proceedings of the Royal Society, London A131, 684–703, 1931.

    Google Scholar 

  10. Rutherford, E., Wynn-Williams, C. E. and Lewis, W. B., “Analysis of the α-Particles Emitted from Thorium C and Actinium C”, Proceedings of the Royal Society, London A133, 351–366, 1931.

    Google Scholar 

  11. Lewis, W. B. and Wynn-Williams, C. E., “The Ranges of the α-Particles from the Radioactive Emanations and “A” Products and from Polonium”, Proceedings of the Royal Society, London A136, 349–363, 1932.

    Google Scholar 

  12. Rutherford, E., Wynn-Williams, C. E. and Bowden, B. V., “Analysis of α-Rays by an Annular Magnetic Field”, Proceedings of the Royal Society, London A139, 617–637, 1933.

    Google Scholar 

  13. Rutherford, E. and Ellis, C. D., “Origin of the γ-Rays”, Proceedings of the Royal Society, London A132, 667–688, 1931.

    Google Scholar 

  14. Convegno di Fisica Nucleare, Ottobre 1931. Reale Accademia d’Italia, 1932.

    Google Scholar 

  15. Goudsmit, S. A., “Present difficulties in the theory of hyperfine structure”, Ibid, pp. 33–49.

    Google Scholar 

  16. Pauli, W., “Zur Frage der theoretischen Deutung der Satelliten einiger Spektrallinien und ihrer Beeinflussung durch magnetische Felder”, Naturwissenschaften 12, 741–743, September 12, 1924.

    Google Scholar 

  17. Bothe, W., “α-Strahlen, künstliche Kernumwandlung und -anregung, Isotope”, in Convegno di Fisica Nucleare, Ottobre 1931, pp. 83–106, Reale Accademia d’Italia, 1932.

    Google Scholar 

  18. Bothe, W. and Becker, H., “Eine γ-Strahlung des Poloniums”, Zeitschrift für Physik 66, 307–310, December 3, 1930.

    Google Scholar 

  19. Bothe, W., “Erzwungene Kernprozesse”, Physikalische Zeitschrift 32, 661–662, September 1, 1931.

    Google Scholar 

  20. Birge, R. T., “Mass defects of C13, O18, N15 from band spectra and the Relativity relation of mass and energy”, Physical Review 37, 841–842, April 1, 1931.

    Google Scholar 

  21. Urey, H. C., Brickwedde, F. G. and Murphy, G. M., “An Hydrogen Isotope of Mass 2”, Physical Review 39, 164–165, January 1, 1932.

    Google Scholar 

  22. Urey, H. C., Brickwedde, F. G. and Murphy, G. M., “An Hydrogen Isotope of Mass 2 and its Concentration.”, Physical Review 40, 1–15, April 1, 1932.

    Google Scholar 

  23. Stuewer, R. H., “The naming of the neutron”, American Journal of Physics 54, 206–218, March 1986.

    Google Scholar 

  24. Murphy, G. M. and Johnston, H., “The Nuclear Spin of Deuterium”, Physical Review 46, 95–98, July 1934.

    Google Scholar 

  25. Charles Weiner, Sir James Chadwick, oral history, American Institute of Physics, 1969; cited by Andrew Brown, The neutron and the bomb, p. 56.

    Google Scholar 

  26. Brown, A., The Neutron and the Bomb, p. 80.

    Google Scholar 

  27. Biquard, P., Frédéric Joliot-Curie et l’énergie atomique, Seghers, Paris, 1961.

    Google Scholar 

  28. Goldsmith, M., Frédéric Joliot-Curie, a biography, Lawrence and Wishart, London, 1976.

    Google Scholar 

  29. Pflaum, R., Grand Obsession: Madame Curie and her world, Doubleday, New York, 1989.

    Google Scholar 

  30. Pinault, M., Frédéric Joliot-Curie, Odile Jacob, Paris, 2000.

    Google Scholar 

  31. Biquard, P., Frédéric Joliot-Curie, p. 27.

    Google Scholar 

  32. Loriot, N., Irène Joliot-Curie, Presses de la Renaissance, Paris, 1991.

    Google Scholar 

  33. Joliot, F., “Étude électrochimique des radioéléments. Applications diverses”, Journal de Chimie Physique 27, 119–162, 1930.

    Google Scholar 

  34. Curie, I. and Joliot, F., “Préparation des sources de polonium de grande densité d’activité”, Journal de Chimie Physique 28, 201–205, 1931.

    Google Scholar 

  35. Joliot, F., “Sur l’excitation des rayons γ nucléaires du bore par les particules α. Énergie quantique du rayonnement γ du polonium”, Comptes Rendus de l’Académie des Sciences 193, 1415–1417, December 28, 1931.

    Google Scholar 

  36. Curie, I., “Sur le rayonnement γ nucléaire excité dans le glucinium et dans le lithium par les rayons α du polonium”, Comptes Rendus de l’Académie des Sciences 193, 1412–1414, session of December 28, 1931.

    Google Scholar 

  37. Curie, I. and Joliot, F., “Émission de protons de grande vitesse par les substances hydrogénées sous l’influence des rayons γ très pénétrants”, Comptes Rendus de l’Académie des Sciences 194, 273–275, session of January18, 1932.

    Google Scholar 

  38. Chadwick, J., “Some Personal Notes on the Search for the Neutron”, in Actes du dixième congrès international d’Histoire des Sciences, edited by Guerlac, H., pp. 159–162, Hermann, Paris, 1962.

    Google Scholar 

  39. Six, J., La découverte du neutron (1920–1936), Éditions du CNRS, Paris, 1987.

    Google Scholar 

  40. Chadwick, J., “Possible existence of a neutron”, Nature 129, 312, February 27, 1932.

    Google Scholar 

  41. Chadwick, J., letter to Niels Bohr, dated 24 february 1932, in A. Brown, The Neutron and the Bomb, p. 365.

    Google Scholar 

  42. Chadwick, J., “The Existence of a Neutron”, Proceedings of the Royal Society, London A136, 692–708, 1932.

    Google Scholar 

  43. Curie, I. and Joliot, F., “La complexité du proton et la masse du neutron”, Comptes Rendus de l’Académie des Sciences 197, 237–238, session of July 17, 1933.

    Google Scholar 

  44. Bainbridge, K. T., “The Mass of Be9 and the Atomic Weight of Beryllium”, Physical Review 43, 367–368, March 1, 1933.

    Google Scholar 

  45. Curie, I. and Joliot, F., “Mass of the Neutron”, Nature 133, 721, May 12, 1934.

    Google Scholar 

  46. Chadwick, J. and Goldhaber, M., “A ‘Nuclear Photoeffect’ : Disintegration of the Diplon by γ-Rays”, Nature 134, 237–238, August 18, 1934.

    Google Scholar 

  47. Chadwick, J. and Goldhaber, M., “The Nuclear Photoelectric Effect”, Proceedings of the Royal Society, London A151, 479–493, September 2, 1935.

    Google Scholar 

  48. Iwanenko, D., “The Neutron Hypothesis”, Nature 129, 798, May 28, 1932.

    Google Scholar 

  49. Heisenberg, W., “Über den Bau der Atomkerne I”, Zeitschrift für Physik 77, 1–11, 1932.

    Google Scholar 

  50. Heitler, W. and London, F. W., “Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik”, Zeitschrift für Physik 44, 455–472, 1927.

    Google Scholar 

  51. Heitler, W., “La théorie quantique des forces de valence”, Annales de l’Institut Henri Poincaré 4, 237–272, 1933.

    Google Scholar 

  52. Heisenberg, W., “Über den Bau der Atomkerne II”, Zeitschrift für Physik 78, 156–164, 1932.

    Google Scholar 

  53. Heisenberg, W., “Über den Bau der Atomkerne III”, Zeitschrift für Physik 80, 587–596, 1933.

    Google Scholar 

  54. Amaldi, E., “Ettore Majorana, man and scientist”, in Strong and weak interactions, 1966 International School of Physics “Ettore Majorana”, Erice, June 19 – July 4, edited by Zichichi, A., pp. 10–77, Academic Press, New York, 1966.

    Google Scholar 

  55. Segrè, Emilio, A Mind Always in Motion. The Autobiography of Emilio Segre, University of California Press, Berkeley, 1993

    Google Scholar 

  56. Fermi, E., “Un metodo statistico per la determinazione di alcune proprietà dell’atomo”, Atti della R. Accademia Nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali 6, 602–607, session of December 4, 1927.

    Google Scholar 

  57. Fermi, E., “Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente”, Zeitschrift für Physik 48, 73–79, 1928.

    Google Scholar 

  58. Thomas, L. H., “The calculation of atomic fields”, Proceedings of the Cambridge Philosophical Society 23, 542–548, session of November 22, 1926.

    Google Scholar 

  59. Fermi, E., “État actuel de la physique du noyau atomique”, in Comptes rendu de la première section du congrès international d’électricité, Paris 1932, edited by de Valbreuze, R., Vol. 1, pp. 789–807, Gauthier-Villars, Paris, 1932.

    Google Scholar 

  60. Majorana, E., “Über die Kerntheorie”, Zeitschrift für Physik 82, 137–145, 1933.

    Google Scholar 

  61. Mehra, J., “Eugene Paul Wigner: a biographical sketch”, in The Collected Works of Eugene Paul Wigner, Vol. 1, pp. 3–14, Springer, Berlin, 1993.

    Google Scholar 

  62. Pais, A., “Eugene Wigner”, in The Genius of Science. A Portrait Gallery, pp. 331–351, Oxford University Press, Oxford, 2000.

    Google Scholar 

  63. Heisenberg, W., “Über die Spektra von Atomsystem mit zwei Elektronen”, Zeitschrift für Physik 39, 499–518, 1926.

    Google Scholar 

  64. Wigner, E. P., “Über nicht Kombinierende Terme in der neueren Quantenmechanik. Erster Teil”, Zeitschrift für Physik 40, 492–500, 1927.

    Google Scholar 

  65. Wigner, E. P., “Über die elastischen Eigenschweigungen symmetrischer Systeme”, Nachrichten der Gesellschaft der Wissenschaften zu Göttingen Mathematisch-Physikalische Klasse pp. 133–146, 1930.

    Google Scholar 

  66. Bouckaert, L. P., Smoluchowski, R. and Wigner, E. P., “Theory of Brillouin Zones and Symmetry Properties of Wave Functions in Crystals”, Physical Review 50, 58–67, July 1936.

    Google Scholar 

  67. Wigner, E. P., “On the Mass Defect of Helium”, Physical Review 43, 252–257, February 1933.

    Google Scholar 

  68. Wigner, E. P., “Über die Streuung von Neutronen an Protonen”, Zeitschrift für Physik 83, 253–258, 1933.

    Google Scholar 

  69. Harkins, W. D. and Wilson, E. D., “Energy Relations involved in the Formation of Complex Atoms”, Philosophical Magazine 30, 723–734, November 1915.

    Google Scholar 

  70. Harkins, W. D., “Isotopes : Their Number and Classification”, Nature 107, 202–3, April 14, 1921.

    Google Scholar 

  71. Harkins, W. D., “The Periodic System of Atomic Nuclei and the Principle of Regularity and Continuity of Series”, Physical Review 38, 1270–1288, October 1931.

    Google Scholar 

  72. Bartlett, J. H., “Structure of Atomic Nuclei”, Physical Review 41, 370–371 (L), August 1932.

    Google Scholar 

  73. Bartlett, J. H., “Structure of Atomic Nuclei. II”, Physical Review 42, 145–146 (L), October 1932.

    Google Scholar 

  74. Elsasser, W. M., “Sur le principe de Pauli dans les noyaux”, Journal de Physique et Le Radium 4, 549–556, October 1933.

    Google Scholar 

  75. Elsasser, W. M., Memoirs of a Physicist in the Atomic Age, Science History Publications & Adam Hilger, New York & Bristol, 1978.

    Google Scholar 

  76. Guggenheimer, K., “Remarques sur la constitution des noyaux atomiques I”, Journal de Physique et Le Radium 5, 253–356, June 1934.

    Google Scholar 

  77. Elsasser, W. M., “Sur le principe de Pauli dans les noyaux II.”, Journal de Physique et Le Radium 5, 389–397, 1934.

    Google Scholar 

  78. Heisenberg, W., “Die Struktur der leichten Atomkerne”, Zeitschrift für Physik 96, 473–484, 1935.

    Google Scholar 

  79. Hartree, D. R., “The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. – Theory and Methods”, Proceedings of the Cambridge Philosophical Society 24, 89–110, session of November 21, 1928.

    Google Scholar 

  80. Hartree, D. R., “The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. – Some Results and Discussion”, Proceedings of the Cambridge Philosophical Society 24, 111–132, session of November 21, 1928.

    Google Scholar 

  81. Hartree, D. R., “The Wave Mechanics of an Atom with a non-Coulomb Central Field. Part III. – Term Values and Intensities in Series in Optical Spectra”, Proceedings of the Cambridge Philosophical Society 24, 426–437, session of July 23, 1928.

    Google Scholar 

  82. Bush, V., “The Differential Analyser. A New Machine for Solving Differential Equations”, Journal of the Franklin Institute 212, 447–488, October 1931.

    Google Scholar 

  83. Feenberg, E. and Wigner, E. P., “On the Structure of the Nuclei between Helium and Oxygen”, Physical Review 51, 95–106, January 1937.

    Google Scholar 

  84. Brueckner, K. A., Campbell, C. E., Clark, J. W. and Primakoff, A., “Eugene Feenberg 1906–1977”, Nuclear Physics A317, i–vii, 1979.

    Google Scholar 

  85. Fock, V., “Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems”, Zeitschrift für Physik 61, 126–148, 1930.

    Google Scholar 

  86. Hund, F., “Symmetrieeigenschaften der Kräfte in Atomkernen und Folgen für deren Zustände, insbesondere der Kerne bis zu sechszehn Teilchen”, Zeitschrift für Physik 105, 202–228, 1937.

    Google Scholar 

  87. Wilson, C. T. R., “Condensation of Water Vapour in the Presence of Dust-free Air and other Gases”, Transactions of the Royal Society A189, 265–307, session of April 8, 1897.

    Google Scholar 

  88. Geitel, H., “Über die Elektrizitätszerstreuung in abgeschlossenen Luftmengen”, Physikalische Zeitschrift 2, 117–119, November 24, 1900.

    Google Scholar 

  89. Coulomb, C., De la quantité d’électricité qu’un corps isolé perd dans un temps donné, soit par le contact de l’air plus ou moins humide, soit le long des soutiens plus ou moins idio-électriques. Troisième mémoire sur l’électricité, 1785, Gauthier-Villars pour la Société Française de Physique, Paris, 1884.

    Google Scholar 

  90. Wilson, C. T. R., “On the leakage of Electricity through dust-free air”, Proceedings of the Cambridge Philosophical Society 11, 32, session of November 26, 1900.

    Google Scholar 

  91. Wilson, C. T. R., “On the Ionisation of the Atmospheric Air”, Proceedings of the Royal Society, London 68, 151–161, session of March 14, published in September 1901.

    Google Scholar 

  92. Rutherford, E. and Allen, S. J., “Excited Radioactivity and Ionization of the Atmosphere”, Philosophical Magazine 4, 704–723, December 1902.

    Google Scholar 

  93. Hess, V. F., “Beobachtung der durchdringenden Strahlung bei sieben Freiballonfahrten”, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Vienne 121, Abteilung IIa, 2001–2032, session of October 17, 1912.

    Google Scholar 

  94. Kolhörster, W., “Messungen der durchdringenden Strahlung im Freiballon in grösseren Höhen”, Verhandlungen der deutschen physikalischen Gesellschaft 16, 1111–1116, November 15, 1913.

    Google Scholar 

  95. Kolhörster, W., “Messungen der durchdringenden Strahlung im Freiballon in grösseren Höhen”, Physikalische Zeitschrift 14, 1153–1156, November 15, 1913.

    Google Scholar 

  96. Millikan, R. A., “High Frequency Rays of Cosmic Origin”, Proceedings of the National Academy of Sciences of the United States of America 12, 48–55, January 15 1926.

    Google Scholar 

  97. Bothe, W. and Kolhörster, W., “Das Wesen der Höhenstrahlung”, Zeitschrift für Physik 56, 751–777, 1929.

    Google Scholar 

  98. Blackett, P. M. S. and Occhialini, G. P. S., “Photography of Penetrating Corpuscular Radiation”, Nature 130, 363, September 3 1932.

    Google Scholar 

  99. Blackett, P. M. S. and Occhialini, G. P. S., “Some Photographs of Penetrating Radiation”, Proceedings of the Royal Society, London 139, 699–718, 1933.

    Google Scholar 

  100. Skobelzyn, D., “Die Intensitätsverteilung in dem Spektrum der γ-Strahlen von RaC”, Zeitschrift für Physik 43, 354–378, 1927.

    Google Scholar 

  101. Skobelzyn, D., “Über eine neue Art sehr schneller β-Strahlen”, Zeitschrift für Physik 54, 686–702, 1929.

    Google Scholar 

  102. Segrè, E., From X-rays to quarks, p. 192.

    Google Scholar 

  103. Anderson, C. D., “The Apparent Existence of Easily Deflectable Positives”, Science 76, 238–239, September 9, 1932.

    Google Scholar 

  104. Anderson, C. D., “The Positive Electron”, Physical Review 43, 491–494, March 1933.

    Google Scholar 

  105. Dirac, P. A. M., “A Theory of Electrons and Protons”, Proceedings of the Royal Society, London A126, 360–365, January 1, 1930.

    Google Scholar 

  106. Dirac, P. A. M., “The Proton”, Nature 126, 605–606, October 18, 1930.

    Google Scholar 

  107. Oppenheimer, J. R., “On the Theory of Electrons and Protons”, Physical Review 35, 562–563, March 1930.

    Google Scholar 

  108. Bird, K. and Sherwin, M. J., American Prometheus, The Triumph and Tragedy of J. Robert Oppenheimer, Alfred A. Knopf, New York, 2005.

    Google Scholar 

  109. Dirac, P. A. M., “Quantized Singularities in the Electromagnetic Field”, Proceedings of the Royal Society, London A133, 60–72, September 1, 1931.

    Google Scholar 

  110. Dirac, P. A. M., “Théorie du positon”, in Structures et propriétés des noyaux atomique, rapports et discussions du septième conseil de Physique Solvay, 22 au 29 octobre 1933, pp. 205–212, Gauthier-Villars, Paris, 1934.

    Google Scholar 

  111. Curie, I. and Joliot, F., “Sur la nature du rayonnement pénétrant excité dans les noyaux légers par les particules α”, Comptes Rendus de l’Académie des Sciences 194, 1229–1232, session of April 11, 1932.

    Google Scholar 

  112. Chadwick, J., Blackett, P. M. S. and Occhialini, G. P. S., “New Evidence for the Positive Electron”, Nature 131, 473, April 1, 1933.

    Google Scholar 

  113. Meitner, L. and Philipp, K., “Die bei Neutronenanregung auftretenden Elektronenbahnen”, Naturwissenschaften 21, 286–287, April 14, 1933.

    Google Scholar 

  114. Curie, I. and Joliot, F., “Contribution à l’étude des électrons positifs”, Comptes Rendus de l’Académie des Sciences 196, 1105–1107, session of April 10, 1933.

    Google Scholar 

  115. Curie, I. and Joliot, F., “Sur l’origine des électrons positifs”, Comptes Rendus de l’Académie des Sciences 196, 1581–1583, May 22, 1933.

    Google Scholar 

  116. Meitner, L. and Philipp, K., “Die Anregung positiver Elektronen durch γ-Strahlen von ThC””, Naturwissenschaften 21, 468, June 16, 1933.

    Google Scholar 

  117. Joliot-Curie, I. and Joliot, F., “Électrons positifs de transmutation”, Comptes Rendus de l’Académie des Sciences 196, 1885–1887, session of June 19, 1933.

    Google Scholar 

  118. Rutherford, E., “Address of the President, Sir Ernest Rutherford, O. M., at the Anniversary Meeting, November 30, 1927.”, Proceedings of the Royal Society, London A117, 300–316, 1928.

    Google Scholar 

  119. Livingston, M. S. and Blewett, J. P., Particle Accelerators, McGraw-Hill, New York, 1962.

    MATH  Google Scholar 

  120. Livingston, M. S. (editor), The Development of High Energy Accelerators, Dover, New York, 1966. A reprint of 28 historical articles.

    Google Scholar 

  121. Grinberg, A. P., “History of the invention and development of accelerators (1922–1932)”, Soviet Physics, Uspekhi 18, 815–831, 1975. Uspekhi fizicheskikh nauk 117, 333–362, October 1975.

    Google Scholar 

  122. Hoffmann, D., “Fritz Lange, Klaus Fuchs, and the Remigration of Scientists to East Germany”, Physics in Perspective 11, 405–425, 2009.

    Google Scholar 

  123. Brasch, A. and Lange, F., “Experimentelle-technische Vorbereitungen zur Atomzerstrümmerung mittels hoher elektrischer Spannungen”, Zeitschrift für Physik 70, 10–37, 1931.

    Google Scholar 

  124. Marx, E., “Verfahren zur Schlagprüfung von Isolatoren und anderer elektrischen Vorrichtungen”, German patent #455933, October 12, 1923.

    Google Scholar 

  125. Schenckel, M., “Eine neue Schaltung für die Erzeugung hoher Gleichspannungen”, Elektrotechnische Zeitschrift 40, 333–334, July 10, 1919.

    Google Scholar 

  126. Greinacher, H., “Über eine Methode, Wechselstrom mittels elektrischer Ventile und Kondensatoren in hochgespannten Gleichstrom umzuwandeln”, Zeitschrift für Physik 4, 195–205, 1921.

    Google Scholar 

  127. Cockcroft, J. D. and Walton, E. T. S., “Disintegration of Lithium by Swift Protons”, Nature 129, 649, April 30, 1932.

    Google Scholar 

  128. Vollrath, R. E., “A High Voltage Direct Current Generator”, Physical Review 42, 298–304, October 15, 1932.

    Google Scholar 

  129. van de Graaff, R., Compton, K. T. and van Atta, L. C., “The Electrostatic Production of High Voltage for Nuclear Investigations”, Physical Review 43, 149–57, February 1933.

    Google Scholar 

  130. van Atta, L. C., Northrup, D. L., van Atta, C. M. and van de Graaff, R., “The Design, Operation, and Performance of the Round Hill Electrostatic Generator”, Physical Review 49, 761–776, May 1936.

    Google Scholar 

  131. van Atta, L. C., Northrup, D. L., van de Graaff, R. and van Atta, C. M., “Electrostatic Generator for Nuclear Research at M.I.T.”, Review of Scientific Instruments 12, 534–545, November 1941.

    Google Scholar 

  132. Tuve, M. A., Hafstad, L. R. and Dahl, O., “Nuclear Physics Studies Using the Van de Graaff Electrostatic Generator”, Physical Review 43, 1055 (A), June 15, 1933.

    Google Scholar 

  133. Tuve, M. A., Hafstad, L. R. and Dahl, O., “Disintegration Experiments on Elements of Medium Atomic Number”, Physical Review 43, 942 (L), July 1, 1933.

    Google Scholar 

  134. Ising, G., “Prinzip einer Methode zur Herstellung von Kanal-Strahlen hoher Voltzahl”, Arkiv för matematik, astronomi och fysik 18, 1–4, 1924.

    Google Scholar 

  135. Walton, E. T. S., “The Production of High Speed Electrons by Indirect Means”, Proceedings of the Cambridge Philosophical Society 25, 469–481, session of July 29, 1929.

    Google Scholar 

  136. Wideröe, R., “Über ein neues Prinzip zur Herstellung hoher Spannungen”, Archiv für Elektrotechnik 21, 387–406, 1928.

    Google Scholar 

  137. Lawrence, E. O., McMillan, E. and Thornton, R. L., “The Transmutation function for Some Cases of Deuteron-Induced Radioactivity”, Physical Review 48, 493–499, September 15, 1935.

    Google Scholar 

  138. Lawrence, E. O. and Edlefsen, N. E., “On the Production of High Speed Protons”, Science 72, 376–377, October 10, 1930.

    Google Scholar 

  139. Sloan, D. H. and Lawrence, E. O., “The Production of Heavy High Speed Ions Without the Use of High Voltages”, Physical Review 38, 2021–2032, December 1, 1931.

    Google Scholar 

  140. Coates, W. M. and Sloan, D. H., “High-velocity mercury ions”, Physical Review 43, 212–13 (A), February 1, 1933.

    Google Scholar 

  141. Sloan, D. H. and Coates, W. M., “Recent Advances in the Production of Heavy High Speed Ions Without the Use of High Voltages”, Physical Review 46, 539–542, October 1934.

    Google Scholar 

  142. Lawrence, E. O. and Livingston, M. S., “The Production of High Speed Protons Without the Use of High Voltages”, Physical Review 38, 834 (L), August 15, 1931.

    Google Scholar 

  143. Lawrence, E. O. and Livingston, M. S., “The Production of High Speed Light Ions without the use of High Voltages”, Physical Review 40, 19–35, April 1, 1932.

    Google Scholar 

  144. Lawrence, E. O., Livingston, M. S. and White, M. G., “The Disintegration of Lithium by Swiftly Moving Protons”, Physical Review 42, 150–151, October 1, 1932.

    Google Scholar 

  145. Henderson, M. C., Livingston, M. S. and Lawrence, E. O., “The Transmutation of Fluorine by Proton Bombardment and the Mass of Fluorine 19”, Physical Review 46, 38–42, July 1934.

    Google Scholar 

  146. Henderson, M. C., Livingston, M. S. and Lawrence, E. O., “Artificial Radioactivity Produced by Deuton Bombardment”, Physical Review 45, 428–429 (L), March 1934.

    Google Scholar 

  147. Lawrence, E. O. and Livingston, M. S., “The Multiple Acceleration of Ions to Very High Voltages”, Physical Review 45, 608–612, May 1934.

    Google Scholar 

  148. Lawrence, E. O. and Cooksey, D., “On the Apparatus for the Multiple Acceleration of Light Ions to High Speeds”, Physical Review 50, 1131–1140, December 1936.

    Google Scholar 

  149. Lawrence, E. O., Alvarez, L. W., Brobeck, W. M., Cooksey, D., Corson, D. R., McMillan, E., Salisbury, W. W. and Thornton, R. L., “Initial Performance of the 60-Inch Cyclotron of the William H. Crocker Radiation Laboratory, University of California”, Physical Review 56, 124 (L), July 1939.

    Google Scholar 

  150. Heilbron, J. L. and Seidel, R. W., Lawrence and his laboratory. Vol. 1, University of California Press, Berkeley, 1989.

    Google Scholar 

  151. Livingston, M. S., Particle Accelerators : A Brief History, Harvard University Press, Cambridge, 1969.

    Google Scholar 

  152. Feenberg, E. and Knipp, J., “Intranuclear forces”, Physical Review 48, 906–912, December 1935.

    Google Scholar 

  153. Wells, W. H., “The Scattering of Protons on Protons”, Physical Review 47, 591–596, April 1935.

    Google Scholar 

  154. White, M. G., “Scattering of High Energy Protons in Hydrogen”, Physical Review 49, 309–316, February 1936.

    Google Scholar 

  155. Tuve, M. A., Heydenburg, N. P. and Hafstad, L. R., “The Scattering of Protons by Protons”, Physical Review 50, 806–825, November 1936.

    Google Scholar 

  156. Breit, G., Condon, E. U. and Present, R. D., “Theory of Scattering of Protons by Protons”, Physical Review 50, 825–845, November 1936.

    Google Scholar 

  157. Amaldi, E. and Fermi, E., “Sull’assorbimento dei neutroni lenti.– III.”, Ricerca Scientifica 7, 56–59, 1936.

    Google Scholar 

  158. Structure et propriétés des noyaux atomiques, rapports et discussions du septième Conseil de Physique Solvay, Bruxelles, 22 au 29 octobre 1933, Gauthier-Villars, Paris, 1934.

    Google Scholar 

  159. Bensaude-Vincent, B., Langevin, science et vigilance, Belin, Paris, 1987.

    Google Scholar 

  160. Joliot, F. and Curie, I., “Rayonnement pénétrant des atomes sous l’action des rayons α”, in Structure et propriétés des noyaux atomiques. Rapports et discussions du septième Conseil de Physique Solvay, Bruxelles, 22 au 29 octobre 1933, pp. 121–156.

    Google Scholar 

  161. Guerra, F., Leone, M. and Robotti, N., “The Discovery of Artificial Radioactivity”, Physics in Perspective 14, 33–58, 2012.

    Google Scholar 

  162. Curie, I. and Joliot, F., “Sur les conditions d’émission des neutrons par action des particules α sur les éléments légers”, Comptes Rendus de l’Académie des Sciences 196, 397–399, session of February 6, 1933.

    Google Scholar 

  163. Meitner, L., “In Structure et propriétés des noyaux atomiques. Rapports et discussions du septième Conseil de Physique Solvay, p. 176”.

    Google Scholar 

  164. Joliot-Curie, I. e. F., “La découverte de la radioactivité artificielle”, Atomes pp. 9–12, January 1951.

    Google Scholar 

  165. Radvanyi, P. and Bordry, M., La radioactivité artificielle et son histoire, Seuil/CNRS, Paris, 1984.

    Google Scholar 

  166. Curie, I. and Joliot, F., “Un nouveau type de radioactivité”, Comptes Rendus de l’Académie des Sciences 198, 254–256, session of January 15, 1934.

    Google Scholar 

  167. Curie, I. and Joliot, F., “Artificial production of a new kind of radio-element”, Nature 133, 201–202, February 10, 1934.

    Google Scholar 

  168. Lauritsen, C. C., Crane, H. R. and Harper, W. W., “Artificial Production of Radioactive Substances”, Science 79, 234, March 9, 1934.

    Google Scholar 

  169. Crane, H. R., Lauritsen, C. C. and Soltan, A., “Artificial Production of Neutrons”, Physical Review 44, 514, September 1933.

    Google Scholar 

  170. Crane, H. R., Lauritsen, C. C. and Soltan, A., “Artificial Production of Neutrons”, Physical Review 45, 507–512, April 1934.

    Google Scholar 

  171. Rutherford, E., letter to F. and I. Joliot-Curie, dated January 29, 1934, Archives Joliot-Curie, Musée Curie, Paris.

    Google Scholar 

  172. Cockcroft, J. D., Gilbert and Walton, E. T. S., “Production of Induced Radioactivity by High Velocity Protons”, Nature 133, 328, March 3, 1934.

    Google Scholar 

  173. Neddermeyer, S. H. and Anderson, C. D., “Energy Spectra of Positrons Ejected by Artificially Stimulated Radioactive Substances”, Physical Review 45, 498–499 (L), April 1934.

    Google Scholar 

  174. Frisch, O. R., “Induced Radioactivity of Sodium and Phosphorus”, Nature 133, 721–722, May 12, 1934.

    Google Scholar 

  175. Joliot, F. and Curie, I., “Artificially produced radio-elements”, in International Conference on Physics, London, 1934. A joint Conference organized by the International Union of Pure and Applied Physics and the Physical Society, Vol. I, pp. 78–89, The Physical Society, London, 1935.

    Google Scholar 

  176. Paneth, F. A. and von Hevesy, G., “Über Versuche zur Trennung des Radiums D von Blei”, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Vienne 122, Abteilung IIa, 993–1000, session of April 24, 1913.

    Google Scholar 

  177. Paneth, F. A. and von Hevesy, G., “Über Radioelemente als Indikatoren in der analytischen Chemie”, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Vienne pp. Abteilung IIa, 1001–1007, session of April 24, 1913.

    Google Scholar 

  178. Coster, D. and von Hevesy, G., “On the Missing Element of Atomic Number 72”, Nature 111, 79, January 20, 1923.

    Google Scholar 

  179. von Hevesy, G., “The Absorption and Translocation of Lead by Plants. A contribution to the application of the method of radioactive indicators in the investigation of the change of substance in plants.”, Biochemical Journal 17, 439–445, 1923.

    Google Scholar 

  180. Christiansen, J. A., de Hevesy, G. and Lomholt, S., “Recherche, par une méthode radiochimique, sur la circulation du bismuth dans l’organisme”, Comptes Rendus de l’Académie des Sciences 178, 1324–26, session of April 24, 1924.

    Google Scholar 

  181. Joliot, F., “Les grandes découvertes de la radioactivité”, in Textes choisis, Éditions sociales, Paris, 1959, p. 66. This written text was planned to be broadcast on April 23, 1957 but it was censored by the French government because the conclusion attracted attention to the dangers of atomic explosions and to the necessity of stopping them.

    Google Scholar 

  182. Joliot, F., “Chemical Evidence of the Transmutation of Elements”, in Nobel Lectures, Chemistry 1922–1941, Elsevier Publishing Company, Amsterdam, 1966.

    Google Scholar 

  183. Fermi, E., Collected Papers (Note e memorie), The University of Chicago Press/Accademia Nazionale dei Lincei, Chicago/Rome, 1962.

    MATH  Google Scholar 

  184. Segrè, E., Enrico Fermi Physicist, The University of Chicago Press, 1970, p. 70.

    Google Scholar 

  185. Ibid. p. 72.

    Google Scholar 

  186. Fermi, E., “Versuch einer Theorie der β-Strahlen”, Zeitschrift für Physik 88, 161–177, 1934.

    Google Scholar 

  187. Sargent, B. W., “Energy distribution curves of the disintegration electrons”, Proceedings of the Cambridge Philosophical Society 28, 538–553, 1932.

    Google Scholar 

  188. Sargent, B. W., “The Maximum Energy of the β-Rays from Uranium X”, Proceedings of the Royal Society, London A139, 659–673, 1933.

    Google Scholar 

  189. Reines, F. and Cowan, C. L., “The Neutrino”, Nature 178, 446–449, September 1, 1956.

    Google Scholar 

  190. Fermi, E., “Radioattività indotta da bombardamento di neutroni. — I.”, Ricerca Scientifica 5, 283, 1934.

    Google Scholar 

  191. Fermi, E., “Radioattività provocata da bombardamento di neutroni.— II.”, Ricerca Scientifica 5, 330–331, 1934.

    Google Scholar 

  192. Fermi, E., “Radioactivity induced by neutron bombardment”, Nature 133, 757 (L), May 19, 1934.

    Google Scholar 

  193. Rutherford, E., letter to E. Fermi, dated April 23, 1934, in Enrico Fermi Collected Papers, p. 641.

    Google Scholar 

  194. Amaldi, E., d’Agostino, O., Fermi, E., Rasetti, F. and Segrè, E., “Radioattività ≪ beta ≫ provocata da bombardamento di neutroni.– III.”, Ricerca Scientifica 5, 452–453, 1934.

    Google Scholar 

  195. Amaldi, E., d’Agostino, O., Fermi, E., Rasetti, F. and Segrè, E., “Radioattività provocata da bombardamento di neutroni.– IV.”, Ricerca Scientifica 5, 652–653, 1934.

    Google Scholar 

  196. Amaldi, E., d’Agostino, O., Fermi, E., Rasetti, F. and Segrè, E., “Radioattività provocata da bombardamento di neutroni.– V.”, Ricerca Scientifica 5, 21–22, 1934.

    Google Scholar 

  197. Amaldi, E., D’Agostino, O. and Segrè, E., “Radioattività provocata da bombardamento di neutroni. — VI”, Ricerca Scientifica 5, 381, 1934.

    Google Scholar 

  198. Fermi, E., Amaldi, E., d’Agostino, O., Rasetti, F. and Segrè, E., “Artificial radioactivity produced by neutron bombardment”, Proceedings of the Royal Society, London A146, 483–500, 1934.

    Google Scholar 

  199. Fermi, E., “Artificial Radioactivity Produced by Neutron Bombardment”, in International Conference on Physics, London 1934, Vol. I, pp. 75–77, The Physical Society, London, 1935.

    Google Scholar 

  200. Fermi, E., Rasetti, F. and D’Agostino, O., “Sulla possibilità di produre elementi di numero atomico maggiore di 92”, Ricerca Scientifica 5, 536–537, 1934.

    Google Scholar 

  201. Fermi, E., “Possible Production of Elements of Atomic Number Higher than 92”, Nature 133, 898–899, June 16, 1934.

    Google Scholar 

  202. Fermi, L., Atoms in the family, p. 91.

    Google Scholar 

  203. Hahn, O. and Meitner, L., “Über die künstliche Umwandlung des Urans durch Neutronen”, Naturwissenschaften 23, 37–38, January 11, 1935.

    Google Scholar 

  204. Fermi, L., Atoms in the family, p. 97.

    Google Scholar 

  205. Fermi, E., Amaldi, E., Pontecorvo, B., Rasetti, F. and Segrè, E., “Azione di sostanze idrogenate sulla radioattività provocata da neutroni.– I.”, Ricerca Scientifica 5, 282–283, 1934.

    Google Scholar 

  206. Fermi, E., Pontecorvo, B. and Rasetti, F., “Effetto di sostanze idrogenate sulla radioattività provocata da neutroni. — II.”, Ricerca Scientifica 5, 380–81, 1934.

    Google Scholar 

  207. Amaldi, E., D’Agostino, O., Fermi, E., Pontecorvo, B., Rasetti, F. and Segrè, E., “Artificial Radioactivity Produced by Neutron Bombardment.– II.”, Proceedings of the Royal Society, London A149, 522–558, April 10, 1935.

    Google Scholar 

  208. Curie, I., Joliot, F. and Preiswerk, P., “Radioéléments créés par le bombardement de neutrons. Nouveau type de radioactivité”, Comptes Rendus de l’Académie des Sciences 198, 2089–2091, session of June 11, 1934.

    Google Scholar 

  209. Moon, P. B. and Tillman, J. R., “Evidence on the Velocity of ‘Slow’ Neutrons”, Nature 135, 904, June 1, 1935.

    Google Scholar 

  210. Artsimovitch, L., Kourtschatov, I., Miççovskiï, L. and Palibin, P., “Au sujet de la capture des neutrons lents par un noyau”, Comptes Rendus de l’Académie des Sciences 200, 2159–2162, session of June 24, 1935.

    Google Scholar 

  211. Tillman, J. R. and Moon, P. B., “Selective Absorption of Slow Neutrons”, Nature 136, 66–67, July 13, 1935.

    Google Scholar 

  212. Bjerge, T. and Westcott, C. H., “On the Slowing Down of Neutrons in Various Substances Containing Hydrogen”, Proceedings of the Royal Society, London A150, 709–728, July 1, 1935.

    Google Scholar 

  213. Amaldi, E. and Fermi, E., “Sull’assorbimento dei neutroni lenti.– I.”, Ricerca Scientifica 6, 344–347, 1935.

    Google Scholar 

  214. Fermi, E. and Amaldi, E., “Sull’assorbimento dei neutroni lenti.– II.”, Ricerca Scientifica 6, 443–437, 1935.

    Google Scholar 

  215. Amaldi, E. and Fermi, E., “Sul cammino libero midio dei neutroni nella paraffina”, Ricerca Scientifica 7, 223–225, 1936.

    Google Scholar 

  216. Amaldi, E. and Fermi, E., “Sui gruppi dei neutroni lenti”, Ricerca Scientifica 7, 310–315, 1936.

    Google Scholar 

  217. Amaldi, E. and Fermi, E., “Sulle proprietà di diffusione dei neutroni lenti”, Ricerca Scientifica 7, 393–395, 1936.

    Google Scholar 

  218. Szilard, L., “Absorption of Residual Neutrons”, Nature 136, 950–951, December 14, 1935.

    Google Scholar 

  219. Rasetti, F., Segrè, E., Fink, G., Dunning, J. R. and Pegram, G. B., “On the Absorption Law for Slow Neutrons”, Physical Review 49, 104 (L), January 1936.

    Google Scholar 

  220. Amaldi, E. and Fermi, E., “Sopra l’assorbimento e la diffusione dei neutroni lenti”, Ricerca Scientifica 7, 454–503, 1936.

    Google Scholar 

  221. Amaldi, E. and Fermi, E., “On the Absorption and the Diffusion of Slow Neutrons”, Physical Review 50, 899–928, November 15, 1936.

    Google Scholar 

  222. Beyerchen, A. D., Scientists under Hitler : politics and the physics community in the third reich, Yale University Press, New Haven, 1977.

    Google Scholar 

  223. Guérout, S., Science et politique sous le Troisième Reich, Ellipses, Paris, 1992.

    Google Scholar 

  224. Klein, O. and Nishina, Y., “Über die Streuung von Srahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac”, Zeitschrift für Physik 52, 853–868, 1929.

    Google Scholar 

  225. Yukawa, H., “Tabibito” (the traveler), World Scientific, London, 1982. Translated by L. Brown and R. Yoshida.

    Google Scholar 

  226. Yukawa, H., “On the Interaction of Elementary Particles”, Proceedings of the Physico-Mathematical Society of Japan 17, 48–57, session of November 17, 1935.

    Google Scholar 

  227. Tamm, I. E., “Exchange Forces between Neutrons and Protons, and Fermi’s Theory”, Nature 133, 981, June 30, 1934.

    Google Scholar 

  228. Yukawa, H., “Tabibito” (The Traveler), p 202–203.

    Google Scholar 

  229. Wick, G. C., “Range of Nuclear Forces in Yukawa’s Theory”, Nature 142, 993–994, December 3, 1938.

    Google Scholar 

  230. Neddermeyer, S. H. and Anderson, C. D., “Note on the Nature of Cosmic-Ray Particles”, Physical Review 51, 884–886, May 15, 1937.

    Google Scholar 

  231. Street, J. C. and Stevenson, E. C., “New Evidence for the Existence of a Particle of Mass Intermediate Between the Proton and Electron”, Physical Review 52, 1003–1004 (L), November 1937.

    Google Scholar 

  232. Anderson, C. D. and Neddermeyer, S. H., “Mesotron (Intermediate particle) as a Name for the New Particles of Intermediate Mass”, Nature 142, 878, November 12, 1938.

    Google Scholar 

  233. Bhabha, H. J., “The Fundamental Length Introduced by the Theory of the Mesotron (Meson)”, Nature 143, 276–277, February 18, 1939.

    Google Scholar 

  234. Bethe, H. A., “Theory of Disintegration of Nuclei by Neutrons”, Physical Review 47, 747–759, May 1935.

    Google Scholar 

  235. Perrin, F. and Elsasser, W. M., “Théorie de la capture sélective des neutrons lents par certains noyaux”, Comptes Rendus de l’Académie des Sciences 200, 450–452, session of February 4, 1935.

    Google Scholar 

  236. Breit, G. and Wigner, E. P., “Capture of slow neutrons”, Physical Review 49, 519–531, April 1936.

    Google Scholar 

  237. Bohr, N., “Neutron Capture and Nuclear Constitution”, Nature 137, 344–348, February 29, 1936.

    Google Scholar 

  238. Bohr, N. and Kalckar, F., “On the transmutation of atomic nuclei by impact of material particles. I. General theoretical remarks”, Det Kongelig Danske Videnskabernes Selskab, Matematisk-fysiske Meddleser 14, No. 10, 1–40, 1937.

    Google Scholar 

  239. Feenberg, E., Shell theory of the nucleus, Princeton University Press, Princeton, 1955.

    MATH  Google Scholar 

  240. Feather, N., Lord Rutherford, Priory Press, London, 1973, p. 189.

    Google Scholar 

  241. Ibid., p. 184.

    Google Scholar 

  242. Brown, A., The Neutron and the Bomb, p. 158.

    Google Scholar 

  243. Eve, A. S., Chadwick, J., Thomson, J. J., Bragg, W. H., Bohr, N., Soddy, F. and Smith, F. E., “The Right Hon. Lord Rutherford of Nelson, O. M., F. R. S.”, Nature 140, 746–754, October 30, 1937.

    Google Scholar 

  244. Fermi, E., “Tribute to Lord Rutherford”, Nature 140, 1052, December 18, 1937.

    Google Scholar 

  245. Bethe, H. A. and Bacher, R. F., “Nuclear Physics. A. Stationary States of Nuclei”, Reviews of Modern Physics 8, 82–229, April 1936.

    Google Scholar 

  246. Bethe, H. A., “Nuclear Physics. B. Nuclear Dynamics, Theoretical”, Reviews of Modern Physics 9, 69–244, April 1937.

    Google Scholar 

  247. Livingston, M. S. and Bethe, H. A., “Nuclear Physics. C. Nuclear Dynamics, Experimental”, Reviews of Modern Physics 9, 245–390, July 1937.

    Google Scholar 

  248. Schweber, S. S., In the Shadow of the Bomb : Bethe, Oppenheimer, and the Moral Responsibility of the Scientist, Princeton University Press, Princeton, 2000.

    Google Scholar 

  249. Pollard, E., “Nuclear Potential Barriers: Experiments and Theory”, Physical Review 47, 611–620, 1935.

    Google Scholar 

  250. von Weizsäcker, C. F., “Zur Theorie der Kernmasse”, Zeitschrift für Physik 96, 431–458, 1935.

    Google Scholar 

  251. Schüler, H. and Schmidt, T., “Über Abweichungen des Atomkerns von der Kugelsymmetrie”, Zeitschrift für Physik 94, 457–468, 1935.

    Google Scholar 

  252. Bethe, H. A. and Placzek, G., “Resonance Effects in Nuclear Processes”, Physical Review 51, 450–484, March 1937.

    Google Scholar 

  253. Amaldi, E., “George Placzek”, Ricerca Scientifica 26, 2038–2042, July 1956.

    Google Scholar 

  254. von Grosse, A. and Agruss, M. S., “Fermi’s Element 93”, Nature 134, 773, November 17, 1934.

    Google Scholar 

  255. Hahn, O. and Meitner, L., “Die Muttersubstanz des Actiniums, ein neues radioaktives Element von langer Lebensdauer”, Physikalische Zeitschrift 19, 208–218, May 15, 1918.

    Google Scholar 

  256. Meitner, L., “Über das Protactinium”, Naturwissenschaften 6, 324–326, May 31, 1918.

    Google Scholar 

  257. Meitner, L., “Über die von I. Curie und F. Joliot entdeckte künstliche Radioaktivität”, Naturwissenschaften 22, 172–174, March 16, 1934.

    Google Scholar 

  258. Meitner, L., “Wege und Irrwege zur Kernenergie”, Naturwissenschaftliche Rundschau 16, 167–169, May 1963.

    Google Scholar 

  259. Shea, W. R., editor, Otto Hahn and the rise of nuclear physics, D. Reidel, Dordrecht, 1983.

    Google Scholar 

  260. Meitner, L., “Einige Erinnerungen an das Kaiser-Wilhelm-Institut für Chemie in Berlin-Dahlem”, Naturwissenschaften 41, 97–99, March 1954.

    Google Scholar 

  261. Noddack, I., “Das periodiches System der Elemente und seine Lücken”, Angewandte Chemie 47, 301–305, May 19, 1934.

    Google Scholar 

  262. Hahn, O. and Meitner, L., “Über die künstliche Umwandlung des Urans durch Neutronen. II. Mitteil”, Naturwissenschaften 23, 230–231, April 5, 1935.

    Google Scholar 

  263. Hahn, O., Meitner, L. and Strassmann, F., “Einige weitere Bemerkungen über die künstlichen Umwandlungsprodukte beim Uran”, Naturwissenschaften 23, 544–545, August 2, 1935.

    Google Scholar 

  264. Meitner, L. and Hahn, O., “Neue Umwandlungsprozesse bei Bestrahlung des Uran mit Neutronen”, Naturwissenschaften 24, 158–159, March 6, 1936.

    Google Scholar 

  265. Sime, R. L., Lise Meitner, p. 352.

    Google Scholar 

  266. Meitner, L., Hahn, O. and Strassmann, F., “Über die Umwandlungsreihen des Urans, die durch Neutronbestrahlung erzeugt werden”, Zeitschrift für Physik 106, 249–270, 1937.

    Google Scholar 

  267. Hahn, O., “Über eine neue radioaktive Substanz im Uran”, Berichte der deutschen chemischen Gesellschaft B 54, 1131–1142, June 11, 1921.

    Google Scholar 

  268. Hahn, O. “Über das Uran Z und seine Muttersubstanz”, Zeitschrift für physikalische Chemie 103, 461–481, 1923.

    Google Scholar 

  269. von Weizsäcker, C. F., “Metastabile Zustände der Atomkerne”, Naturwissenschaften 24, 813–814, December 18, 1936.

    Google Scholar 

  270. von Droste, G., “Über Versuche eines Nachweiss von α-Strahlen während der Bestrahlung von Thorium und Uran mit Radium + Beryllium-Neutronen”, Zeitschrift für Physik 110, 84–94, 1938.

    Google Scholar 

  271. Goldschmidt, B., Pionniers de l’atome, Stock, Paris, 1987, p. 27.

    Google Scholar 

  272. Goldschmidt, B., “Hans Halban (1908–1964)”, Nuclear Physics 79, 1–11, 1966.

    Google Scholar 

  273. Curie, I., von Halban, H. and Preiswerk, P., “Sur la création artificielle des éléments d’une famille radioactive inconnue lors de l’irradiation du thorium par les neutrons”, Comptes Rendus de l’Académie des Sciences 200, 1841–1843, session of May 27, 1935.

    Google Scholar 

  274. von Halban, H. and Preiswerk, P., “Sur l’existence de niveaux de résonance pour la capture de neutrons”, Comptes Rendus de l’Académie des Sciences 202, 133–135, session of January 13, 1936.

    Google Scholar 

  275. von Halban, H. and Preiswerk, P., “Recherches sur les neutrons lents”, Journal de Physique et Le Radium 8, 29–40, January 1937.

    Google Scholar 

  276. Curie, I. and Savitch, P., “Sur les radioéléments formés dans l’uranium irradié par les neutrons (I)”, Journal de Physique et Le Radium 8, 385–387, October 1937.

    Google Scholar 

  277. Hahn, O. and Meitner, L., letter to Irène Curie, dated January 20, 1938, Archives Joliot-Curie, Musée Curie, Paris.

    Google Scholar 

  278. Curie, I. and Savitch, P., “Sur le radioélément de période 3,5 heures formé dans l’uranium irradié par les neutrons”, Comptes Rendus de l’Académie des Sciences 206, 906–908, session of March 21, 1938.

    Google Scholar 

  279. Curie, I. and Savitch, P., “Sur la nature du radioélément de période 3,5 heures formé dans l’uranium irradié par les neutrons”, Comptes Rendus de l’Académie des Sciences 206, 1643–1644, session of May 30, 1938.

    Google Scholar 

  280. Sime, R. L., “Lise’s Meitner escape from Germany”, American Journal of Physics 58, 262–67, 1990.

    Google Scholar 

  281. Sime, R. L., Lise Meitner, a life in Physics, pp. 184–209.

    Google Scholar 

  282. Rife, P., Lise Meitner and the Dawn of Nuclear Age, pp. 160–177.

    Google Scholar 

  283. Krafft, F., Im Schatten der Sensation, Leben und Wirken von Fritz Strassmann, Verlag Chemie, Weinheim, 1981.

    Google Scholar 

  284. Joliot, F., Textes choisis, p. 35.

    Google Scholar 

  285. Curie, I. and Savitch, P., “Sur les radioéléments formés dans l’uranium irradié par les neutrons (II)”, Journal de Physique et Le Radium 9, 355–359, September 1938.

    Google Scholar 

  286. Cook, L. G., “Personal reminiscences of the Kaiser Wilhelm Institut, Berlin, 1937–38 and the nuclear project in Canada, 1944–45.”, in 50 years with nuclear fission, 25–28 April 1989, Gaitherzburg, edited by Behrens, J. W., American Nuclear Society, La Grange Park, 1989.

    Google Scholar 

  287. Hahn, O., Meitner, L. and Strassmann, F., “Ein neues langlebiges Umwandlungsprodukt in den Trans-Uranreihen”, Naturwissenschaften 26, 475–476, July 22, 1938.

    Google Scholar 

  288. Hahn, O. and Strassmann, F., “Über die Entstehung von Radiumisotopen aus Uran durch Bestrahlen mit schnellen und verlangsamten Neutronen”, Naturwissenschaften 26, 755–756, November 18, 1938.

    Google Scholar 

  289. Sime, R. L., Lise Meitner, p. 227.

    Google Scholar 

  290. Krafft, F., Im Schatten der Sensation, p. 264.

    Google Scholar 

  291. Hahn, O. and Strassmann, F., “Über den Nachweis und das Verhalten bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle”, Naturwissenschaften 27, 11–15, January 6, 1939.

    Google Scholar 

  292. Perrier, C. and Segrè, E., “Some Chemical Properties of Element 43”, Journal of Chemical Physics 5, 712–716, September 1937.

    Google Scholar 

  293. Frisch, O. R. and Wheeler, J. A., “The discovery of fission”, Physics Today 20, 43–48, November 1967.

    Google Scholar 

  294. Frisch, O. R., What Little I Remember, Cambridge University Press, Cambridge, 1979, p. 115.

    Google Scholar 

  295. Ibid., p. 116.

    Google Scholar 

  296. Ibid.

    Google Scholar 

  297. Stuewer, R. H., “Bringing the news of fission to America”, Physics Today 38, 48–56, October 1985.

    Google Scholar 

  298. Sime, R. L., Lise Meitner, p. 243.

    Google Scholar 

  299. Meitner, L. and Frisch, O. R., “Disintegration of Uranium by Neutrons: a New Type of Nuclear Reaction”, Nature 143, 239–240, February 11, 1939.

    Google Scholar 

  300. Frisch, O. R., “Physical Evidence for the division of Heavy Nuclei Under Neutron Bombardment”, Nature 143, 276, February 18, 1939.

    Google Scholar 

  301. Goldschmidt, B., Pionniers de l’atome, p. 102.

    Google Scholar 

  302. Biquard, P., Frédéric Joliot-Curie, p. 55.

    Google Scholar 

  303. Joliot, F., “Preuve expérimentale de la rupture explosive des noyaux d’uranium et de thorium sous l’action des neutrons”, Comptes Rendus de l’Académie des Sciences 208, 341–43, session of January 30, 1939.

    Google Scholar 

  304. Joliot, F., “Observation par la méthode de Wilson des trajectoires de brouillard des produits de l’explosion des noyaux d’uranium”, Comptes Rendus de l’Académie des Sciences 208, 647–649, session of February 27, 1939.

    Google Scholar 

  305. Goldschmidt, B., Pionniers de l’atome, p. 39.

    Google Scholar 

  306. Meitner, L. and Frisch, O. R., “Products of Fission in the Uranium Nucleus”, Nature 143, 471–472, March 18, 1939.

    Google Scholar 

  307. Abelson, P., “Cleavage of the Uranium Nucleus”, Physical Review 55, 418 (L), February 1939.

    Google Scholar 

  308. Anderson, H. L., Booth, E. T., Dunning, J. R., Fermi, E., Glasoe, G. N. and Slack, F. G., “The Fission of Uranium”, Physical Review 55, 511–512 (L), March 1939.

    Google Scholar 

  309. von Grosse, A., Booth, E. T. and Dunning, J. R., “The Fission of Protactinium (Element 91)”, Physical Review 56, 382 (L), August 1939.

    Google Scholar 

  310. Bretscher, E. and Cook, L. G., “Transmutations of Uranium and Thorium Nuclei by Neutrons”, Nature 143, 559–560, April 1, 1939.

    Google Scholar 

  311. Bohr, N., “Resonance in Uranium and Thorium Disintegrations and the Phenomenon of Nuclear Fission”, Physical Review 55, 418–419, February 1939.

    Google Scholar 

  312. Nier, A. O., “The Isotopic Constitution of Uranium and the Half-Livres of the Uranium Isotopes. I.”, Physical Review 55, 150–153, January 15 1939.

    Google Scholar 

  313. Bohr, N. and Wheeler, J. A., “The Mechanism of Nuclear Fission”, Physical Review 56, 426–450, September 1939.

    Google Scholar 

  314. Lanouette, W., Genius in the shadows. A biography of Leo Szilard : the man behind the bomb, C. Scribner’s Sons, New York, 1992.

    Google Scholar 

  315. Brasch, A., Lange, F., Waly, A., Banks, T. E., Chalmers, T. A., Szilard, L. and Hopwood, F. L., “Liberation of Neutrons from Beryllium by X-Rays: Radioactivity Induced by Means of Electron Tubes”, Nature 134, 880, December 8, 1934.

    Google Scholar 

  316. Soddy, F., The Interpretation of Radium, John Murray, London, 1912.

    Google Scholar 

  317. Ibid., p. 238.

    Google Scholar 

  318. Ibid., p. 251.

    Google Scholar 

  319. Wells, H. G., The World Set Free, E. P. Dutton & Company, London, 1914.

    Google Scholar 

  320. Weart, S., Scientists in power, Harvard University Press, Cambridge, 1979, p. 67.

    Google Scholar 

  321. Rutherford, E., “Atomic Transmutations”, Nature 132, 432–433, September 16, 1933.

    Google Scholar 

  322. Weart, S. and Weiss Szilard, G., Leo Szilard : His Version of the Facts, p. 38.

    Google Scholar 

  323. Ibid., p. 55.

    Google Scholar 

  324. von Halban, H., Joliot, F. and Kowarski, L., “Liberation of neutrons in the nuclear explosion of uranium”, Nature 143, 470–471, March 18, 1939.

    Google Scholar 

  325. Szilard, L. and Chalmers, T. A., “Detection of Neutrons Liberated from Beryllium by Gamma Rays: a New Technique for Inducing Radioactivity”, Nature 134, 494–495, September 29, 1934.

    Google Scholar 

  326. Dodé, M., von Halban, H., Joliot, F. and Kowarski, L., “Sur l’énergie des neutrons libérés lors de la partition nucléaire de l’uranium”, Comptes Rendus de l’Académie des Sciences 208, 995–997, session of March 27, 1939.

    Google Scholar 

  327. Szilard, L. and Zinn, W. H., “Instantaneous Emission of Fast Neutrons in the Interaction of Slow Neutrons with Uranium”, Physical Review 55, 799–800, April 15, 1939.

    Google Scholar 

  328. Anderson, H. L., Fermi, E. and Hanstein, H. B., “Production of Neutrons in Uranium Bombarded by Neutrons”, Physical Review 55, 797–798 (L), April 1939.

    Google Scholar 

  329. Anderson, H. L., Fermi, E. and Szilard, L., “Neutron Production and Absorption in Uranium”, Physical Review 56, 284–286, August 1, 1939.

    Google Scholar 

  330. von Halban, H., Joliot, F. and Kowarski, L., “Number of neutrons liberated in the nuclear fission of uranium”, Nature 143, 680, April 22, 1939.

    Google Scholar 

  331. Flügge, S., “Kann der Energieinhalt der Atomkerne technisch nutzbar gemacht werden?”, Naturwissenschaften 27, 402–410, June 9, 1939.

    Google Scholar 

  332. Zinn, W. H. and Szilard, L., “Emission of Neutrons by Uranium”, Physical Review 56, 619–624, October 1939.

    Google Scholar 

  333. Halban, H., Joliot, F., Kowarski, L. and Perrin, F., “Mise en évidence d’une réaction nucléaire en chaîne au sein d’une masse uranifère”, Journal de Physique et Le Radium 10, 428–434, October 1939.

    Google Scholar 

  334. Marbo (Berthe Borel), C., A travers deux siècles, souvenirs et rencontres : 1883–1967, Grasset, Paris, 1967, p. 183.

    Google Scholar 

  335. Halban, H. v., Joliot, F., Kowarski, L. and Perrin, F., “Dispositif de production d’énergie”, Patent #976.541, taken out by the “Caisse Nationale de la Recherche Scientifique” on May 1, 1939. In Frédéric and Irène Joliot-Curie, Œuvres scientifiques complètes, p. 678–683.

    Google Scholar 

  336. Halban, H. v., Joliot, F., Kowarski, L. and Perrin, F., “Perfectionnements aux charges explosives”, Patent #971.324, taken out by the “Caisse Nationale de la Recherche Scientifique” on May 4, 1939. In Frédéric and Irène Joliot-Curie, Œuvres scientifiques complètes, p. 687–691.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fernandez, B. (2013). 1930–1940: A Dazzling Development. In: Unravelling the Mystery of the Atomic Nucleus. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4181-6_5

Download citation

Publish with us

Policies and ethics