Skip to main content

Tobacco Trichomes as a Platform for Terpenoid Biosynthesis Engineering

  • Chapter
  • First Online:
Isoprenoid Synthesis in Plants and Microorganisms

Abstract

Many plant species have evolved specialized organs dedicated to the production of a restricted number of secondary metabolites. These organs have secretory tissues which can lead to very significant accumulations of products, in the range of mg per g of fresh weight. These natural cell factories are therefore interesting targets for metabolic engineering. Plant glandular trichomes in particular have attracted interest because of the relative ease to isolate them and to analyse the compounds they produce because they are secreted onto the leaf surface. Depending on the species, trichomes can produce a variety of metabolites. Terpenoids however are particularly well represented and have been used by humans in a variety of industries, including as aroma, fragrance and pharmaceutical ingredients. Tobacco trichomes produce diterpenoids in large amounts and were therefore chosen as a model system for engineering the biosynthesis of this important class of compounds. We present here our strategy and first results, which bode well for the future of glandular trichomes as engineered natural cellular factories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Besumbes O, Sauret-Güeto S, Phillips MA, Imperial S, Rodríguez-Concepción M, Boronat A (2004) Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of Taxol. Biotechnol Bioeng 88:168–175

    Article  PubMed  CAS  Google Scholar 

  • Deguerry F, Pastore L, Wu S, Clark A, Chappell J, Schalk M (2006) The diverse sesquiterpene profile of patchouli, Pogostemon cablin, is correlated with a limited number of sesquiterpene synthases. Arch Biochem Biophys 454:123–136

    Article  PubMed  CAS  Google Scholar 

  • Dueber MT, Adolf W, West CA (1978) Biosynthesis of the diterpene phytoalexin casbene: partial purification and characterization of casbene synthetase from Ricinus communis. Plant Physiol 62:598–603

    Article  PubMed  CAS  Google Scholar 

  • Ennajdaoui H, Vachon G, Giacalone C, Besse I, Sallaud C, Herzog M, Tissier A (2010) Trichome specific expression of the tobacco (Nicotiana sylvestris) cembratrien-ol synthase genes is controlled by both activating and repressing cis-regions. Plant Mol Biol 73:673–685

    Article  PubMed  CAS  Google Scholar 

  • Gershenzon J, Maffei M, Croteau R (1989) Biochemical and histochemical localization of monoterpene biosynthesis in the glandular trichomes of spearmint (Mentha spicata). Plant Physiol 89:1351–1357

    Article  PubMed  CAS  Google Scholar 

  • Gershenzon J, McCaskill D, Rajaonarivony JI, Mihaliak C, Karp F, Croteau R (1992) Isolation of secretory cells from plant glandular trichomes and their use in biosynthetic studies of monoterpenes and other gland products. Anal Biochem 200:130–138

    Article  PubMed  CAS  Google Scholar 

  • Guo Z, Severson RF, Wagner GJ (1994) Biosynthesis of the diterpene cis-abienol in cell-free extracts of tobacco trichomes. Arch Biochem Biophys 308:103–108

    Article  PubMed  CAS  Google Scholar 

  • Hezari M, Lewis NG, Croteau R (1995) Purification and characterization of taxa-4(5),11(12)-diene synthase from Pacific yew (Taxus brevifolia) that catalyzes the first committed step of Taxol biosynthesis. Arch Biochem Biophys 322:437–444

    Article  PubMed  CAS  Google Scholar 

  • Iijima Y, Gang DR, Fridman E, Lewinsohn E, Pichersky E (2004) Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol 134:370–379

    Article  PubMed  CAS  Google Scholar 

  • Jasinski M, Stukkens Y, Degand H, Purnelle B, Marchand-Brynaert J, Boutry M (2001) A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell 13: 1095–1107

    PubMed  CAS  Google Scholar 

  • Jennewein S, Croteau R (2001) Taxol: biosynthesis, molecular genetics, and biotechnological applications. Appl Microbiol Biotechnol 57:13–19

    Article  PubMed  CAS  Google Scholar 

  • Jennewein S, Long RM, Williams RM, Croteau R (2004a) Cytochrome p450 taxadiene 5alpha-hydroxylase, a mechanistically unusual monooxygenase catalyzing the first oxygenation step of Taxol biosynthesis. Chem Biol 11:379–387

    Article  PubMed  CAS  Google Scholar 

  • Jennewein S, Wildung MR, Chau M, Walker K, Croteau R (2004b) Random sequencing of an induced Taxus cell cDNA library for identification of clones involved in Taxol biosynthesis. Proc Natl Acad Sci USA 101:9149–9154

    Article  PubMed  CAS  Google Scholar 

  • Keene CK, Wagner GJ (1985) Direct demonstration of duvatrienediol biosynthesis in glandular heads of tobacco trichomes. Plant Physiol 79:1026–1032

    Article  PubMed  CAS  Google Scholar 

  • Larkin JC, Oppenheimer DG, Pollock S, Marks MD (1993) Arabidopsis GLABROUS1 gene requires downstream sequences for function. Plant Cell 5: 1739–1748

    PubMed  CAS  Google Scholar 

  • Maffei M, Chialva F, Sacco T (1989) Glandular trichomes and essential oils in developing peppermint leaves. I. Variation of peltate trichome number and terpene distribution within leaves. New Phytol 111:707–716

    Article  CAS  Google Scholar 

  • Mau CJ, West CA (1994) Cloning of casbene synthase cDNA: evidence for conserved structural features among terpenoid cyclases in plants. Proc Natl Acad Sci USA 91:8497–8501

    Article  PubMed  CAS  Google Scholar 

  • Oppenheimer DG, Herman PL, Sivakumaran S, Esch J, Marks MD (1991) A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell 67:483–493

    Article  PubMed  CAS  Google Scholar 

  • Pickard WF (2008) Laticifers and secretory ducts: two other tube systems in plants. New Phytol 177:877–888

    Article  PubMed  Google Scholar 

  • Rontein D, OnillonS HG, Lesot A, Werck-Reichhart D, Sallaud C, Tissier A (2008) CYP725A4 from yew catalyzes complex structural rearrangement of taxa-4(5),11(12)-diene into the cyclic ether 5(12)-oxa-3(11)-cyclotaxane. J Biol Chem 283:6067–6075

    Article  PubMed  CAS  Google Scholar 

  • Schilmiller AL, Last RL, Pichersky E (2008) Harnessing plant trichome biochemistry for the production of useful compounds. Plant J 54:702–711

    Article  PubMed  CAS  Google Scholar 

  • Serna L, Martin C (2006) Trichomes: different regulatory networks lead to convergent structures. Trends Plant Sci 11:274–280

    Article  PubMed  CAS  Google Scholar 

  • Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    Article  PubMed  CAS  Google Scholar 

  • Steele C, Katoh S, Bohlmann J, Croteau R (1998) Regulation of oleoresinosis in grand fir (Abies grandis). Differential transcriptional control of monoterpene, sesquiterpene, and diterpene synthase genes in response to wounding. Plant Physiol 116:1497–1504

    Article  PubMed  CAS  Google Scholar 

  • Stekoll M, West CA (1978) Purification and properties of an elicitor of castor bean phytoalexin from culture filtrates of the fungus Rhizopus stolonifer. Plant Physiol 61:38–45

    Article  PubMed  CAS  Google Scholar 

  • Wagner GJ (1991) Secreting glandular trichomes: more than just hairs. Plant Physiol 96:675–679

    Article  PubMed  CAS  Google Scholar 

  • Wang E, Wagner GJ (2003) Elucidation of the functions of genes central to diterpene metabolism in tobacco trichomes using posttranscriptional gene silencing. Planta 216:686–691

    PubMed  CAS  Google Scholar 

  • Wang E, Gan S, Wagner GJ (2002) Isolation and characterization of the CYP71D16 trichome-specific promoter from Nicotiana tabacum L. J Exp Bot 53:1891–1897

    Article  PubMed  CAS  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  PubMed  CAS  Google Scholar 

  • Wildung MR, Croteau R (1996) A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. J Biol Chem 271:9201–9204

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Tissier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tissier, A., Sallaud, C., Rontein, D. (2012). Tobacco Trichomes as a Platform for Terpenoid Biosynthesis Engineering. In: Bach, T., Rohmer, M. (eds) Isoprenoid Synthesis in Plants and Microorganisms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4063-5_18

Download citation

Publish with us

Policies and ethics