Skip to main content

Laser Machining and its Associated Effects

  • Chapter
  • First Online:
Advanced Analysis of Nontraditional Machining

Abstract

Laser machining has a wide range of industrial applications. However, laser energy can cause thermal damage to composite materials during the shaping operation following curing. Such damage leads to poor assembly tolerances and reduces long-term performance. In this study, we investigated the laser machining-induced formation of anisotropic heat-affected zones (HAZs) in fiber-reinforced plastics (FRP). The degree of HAZ is estimated by the isotherm of the matrix char temperature. Analysis revealed that both the laser energy per unit length and the fiber orientation-dependent thermal conductivity are key factors in determining the extent of HAZ. An experimental measurement of anisotropic thermal conductivity for composite materials is developed. Heat conduction is greater along fibers than it is across a fiber section, thus laser scanning direction relative to fiber orientation affects the HAZ geometry. The study also investigated the principal-axis and nonprincipal-axis grooving of unidirectional (UD), [0/90], Mat, and MatUD laminates. An analytical model based on a moving point heat source using the Mirror Image Method and immersed heat source to model principal-axis grooving is adopted to correlate HAZ anisotropy with various process parameters. Finite difference method (FDM) with an isotherm conductivity model and eigenvalue method is applied to simulate the HAZ resulting from nonprincipal-axis grooving.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dell’Erba M, Galantucci LM, Miglietta S (1992) An experimental study on laser drilling and cutting of composite materials for the aerospace industry using excimer and CO2 sources. Compos Manuf 3(1):14–19

    Article  Google Scholar 

  2. Modest MF, Abakians H (1986) Heat conduction in a moving semi-infinite solid subjected to pulsed laser irradiation. ASME J Heat Transfer 108:597–601

    Article  Google Scholar 

  3. Schuocker D (1986) Dynamic phenomena in laser cutting and cut quality. J Appl Phys 40:9–14

    Article  Google Scholar 

  4. Schuocker D, Abel W (1983) Material removal mechanism of laser cutting. In: Proceedings of the SPIE, pp 88–95

    Google Scholar 

  5. Yilbas BS (1987) Study of affecting parameters in laser hole drilling of sheet metals. Trans ASME 109:282–285

    Google Scholar 

  6. Anon., Coherent Inc. (1988) Lasers-operation, equipment, application, and design. McGraw-Hill, New York, pp 19–30

    Google Scholar 

  7. Mello MD (1986) Laser cutting of non-metallic composites. In: Proceedings of the SPIE-laser processing: fundamentals, applications, and systems engineering, pp 288–290

    Google Scholar 

  8. Luxon JT, Parker DE (1985) Industrial lasers and their applications. Prentice-Hall, Engelwood Cliffs, NY, pp 200–242

    Google Scholar 

  9. Sturmer E, Von Allmen M (1978) Influence of laser-supported detonation waves on metal drilling with pulsed CO2 lasers. J Appl Phys 49(11):5648–5654

    Article  Google Scholar 

  10. Sepold G, Rothe R (1983) Laser beam cutting of thick steel. ICALEO, SPIE, pp 156–159

    Google Scholar 

  11. Eberhardt G (1983) Survey of high power CO2 industrial laser applications and latest laser developments. In: Kimmitt MF (ed) Proceedings of first international conference on lasers in manufacturing, IFS Publication, Bedford, pp 13–19

    Google Scholar 

  12. Lee CS, Goel A, Osada H (1985) Parametric studies of pulsed-laser cutting of thin metal plate. J Appl Phys 58(3):1339–1343

    Article  Google Scholar 

  13. Hamann C, Rosen H (1987) Laser machining of ceramic and silicon. In: SPIE-high power laser and their industrial applications, vol 801, pp 130–137

    Google Scholar 

  14. Siekman JG (1979) Analysis of laser drilling and cutting results in Al2O3 and ferrites. AIP Conf Proc 50:225–231

    Google Scholar 

  15. Chryssolouris G, Bredt J, Kordas S, Wilson E (1988) Theoretical aspect of a laser machine tool. ASME J Eng Industry 110:65–70

    Article  Google Scholar 

  16. Chryssolouris G, Sheng P, Choi WC (1990) Three dimensional laser machining of composite materials. ASME J Eng Mater Technol 112:387–392

    Article  Google Scholar 

  17. Copley S (1983) Shaping materials with lasers. Laser Mater Process 3:297–336

    Article  Google Scholar 

  18. Henderson JB, Wiecek TE (1987) A mathematical model to predict the thermal response of decomposite expanding polymer composite. J Compos Mater 21:373–393

    Article  Google Scholar 

  19. Tagliaferri V, Diilio A (1989) Thermal damage in laser cutting of (0/90)2s aramid/epoxy laminates. Composites 20(2):115–119

    Article  Google Scholar 

  20. Tagliaferri V, Visconti CI, Diilio A (1987) Machining of fiber reinforced material with laser beam: cut quality evaluation. In: Proceedings of the sixth international conference on composite materials, pp 1.190–1.198

    Google Scholar 

  21. Tagliaferri V, Diilio A, Visconti CI (1985) Laser cutting of fiber-reinforced polyester. Composites 16(4):317–325

    Article  Google Scholar 

  22. Chryssolouris G, Sheng P, Anastasia N (1993) Laser grooving of composite materials with the aid of a water jet. ASME J Eng Industry 115:62–72

    Article  Google Scholar 

  23. Lau WS, Lee WB (1990) Pulsed Nd: laser cutting of carbon fiber composite materials. Ann CIRP 39:179–182

    Article  Google Scholar 

  24. Lienhard JH (1981) A heat transfer handbook. Prentice-Hall, Englewood Cliffs, NY

    Google Scholar 

  25. Hocheng H, Pan CT (1993) HAZ in laser cutting of carbon fiber-reinforced PEEK. In: Proceedings of ASME winter annual meeting, PED, vol 66, pp 153–159

    Google Scholar 

  26. Olsen O (1989) Cutting front formation in laser cutting. Ann CIRP 38:215–218

    Article  Google Scholar 

  27. Na SJ, Yang YS (1989) Effect of shielding gas pressure in laser cutting of sheet metals. Trans ASME 111:314–318

    Article  Google Scholar 

  28. Duley WW, Gonsalves JN (1974) CO2 laser cutting of thin metal sheets with gas jet assist. Opt Laser Technol 6(2):78–81

    Article  Google Scholar 

  29. Patel RS, Brewster MQ (1991) Gas-assisted laser-metal drilling: theoretical model. J Thermophys 5(1):32–39

    Article  Google Scholar 

  30. Lee SL (1989) Weighting function scheme and its application on multidimensional conservation equations. Int J Heat Mass Transfer 32(11):2065–2073

    Article  Google Scholar 

  31. Springer GS, Tsai SW (1967) Thermal conductivities of unidirectional materials. J Compos Mater 1:166–173

    Article  Google Scholar 

  32. Rolfes R, Hammerschmidet U (1995) Transverse thermal conductivity of CFRP laminates: a numerical and experimental validation of approximation formulae. Compos Sci Technol 54(1):45–54

    Article  Google Scholar 

  33. Chawla KK (1987) Composite materials science and engineering. Springer-Verlag, New York

    Google Scholar 

  34. Hashin Z (1983) Analysis of composite material—a survey. J Appl Mech 50:481–505

    Article  MATH  Google Scholar 

  35. Rayleigh L (1982) On the influence of obstacles arranged in rectangular order upon the properties of a medium. Phil Mag 34:481–489

    Google Scholar 

  36. Mukherjee K, Khan PAA (1990) Laser machining of graphite, kevlar and glass-reinforced composites. In: Proceedings of the American society for composite fifth technical conference, East Lansing, Michigan, pp 91–104

    Google Scholar 

  37. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Clarendon, London

    Google Scholar 

  38. Rosenthal D (1946) The theory of moving sources of heat and its applications to metal treatments. Trans ASME 68:849–866

    Google Scholar 

  39. Liebelt S (1992) Modeling and simulation of laser grooving and cutting for isotropic materials and fiber reinforced plastics. Diplomarbeit IWF, Berlin

    Google Scholar 

  40. Hocheng H, Pan CT (1999) The effects of cryogenic surroundings on thermal induced damage in laser grooving of fiber-reinforced plastic. J Mach Sci Technol 3(1):77–90

    Article  Google Scholar 

  41. Pan CT, Hocheng H (2001) Evaluation of anisotropic thermal conductivity for unidirectional FRP in laser machining. Compos Part A 32:1657–1667

    Article  Google Scholar 

  42. Uhlmann E, Spur G, Hocheng H, Liebelt S, Pan CT (1999) The extent of laser-induced thermal damage of fiber Ud and cross-ply composite laminates. Int J Mach Tool Manuf 39(4):639–650

    Article  Google Scholar 

  43. Pan CT, Hocheng H (1998) Prediction of laser-induced thermal damage of fiber mat and fiber matUD-reinforced polymers. J Mater Eng Perform 7(6):751–756

    Article  Google Scholar 

  44. Jie BL, Yu BL (1990) Practical thermal analysis. Textile Industry, Taiwan

    Google Scholar 

  45. Cowan RD (1969) Pulse method of measuring thermal diffusivity at high temperature. J Appl Phys 34:927–929

    Google Scholar 

  46. Parker WJ, Jenkins RJ, Butler CP, Abbott GL (1961) A flash method of determining thermal diffusivity heat capacity, and thermal conductivity. J Appl Phys 32:1679–1684

    Article  Google Scholar 

  47. Heber A (1994) Modell zur rheologischen auslegung faserverstärkter thermoplastischer preßbauteile, Dissertation RWTH, Aachen, Germany

    Google Scholar 

  48. Carprino G, Tagliaferri V (1988) Maximum cutting speed in laser cutting of fiber reinforced plastics. Int J Mach Tools Manuf 28(4):389–398

    Article  Google Scholar 

  49. Tyn Myint U (1973) Partial differential equation of mathematical physics. Elsevier North Holland, New York

    Google Scholar 

  50. Pilling MW, Yates B, Black MA, Tattersall P (1979) The thermal conductivity of carbon fiber-reinforced composites. J Mater Sci 14:1326–1338

    Article  Google Scholar 

  51. Spur G, Liebelt St. (1997) Modeling of laser cutting composite and comparison with experiment. In: Fourth international conference of composites engineering (ICCE/4), Big Island, pp 599–600

    Google Scholar 

  52. Powell RW (1951) Thermal conductivities of metallic conductors and their estimation. In: Proceedings of general discussion heat transfer, ASME-IME, London, pp 290–295

    Google Scholar 

  53. Pan CT, Hocheng H (1998) Prediction of extent of heat affected zone in laser grooving of unidirectional fiber-reinforced plastics. J Eng Mater Technol ASME 120:321–327

    Article  Google Scholar 

  54. Pan CT, Hocheng H (1996) The anisotropic heat affected zone in laser grooving of fiber reinforced composite material. J Mater Process Technol 62:54–60

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. T. Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pan, C.T., Hocheng, H. (2013). Laser Machining and its Associated Effects. In: Hocheng, H., Tsai, HY. (eds) Advanced Analysis of Nontraditional Machining. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4054-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4054-3_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4053-6

  • Online ISBN: 978-1-4614-4054-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics