Skip to main content

Enteroviruses in the Mouse Model of Type 1 Diabetes

  • Chapter
  • First Online:
Diabetes and Viruses

Abstract

Findings of pancreatitis in mice after infection with the human enteroviruses coxsackievirus B (CVB) suggested a relationship to the onset of type 1 diabetes (Coleman et al. 1973), a correlation that had been suggested by studies that had variably found a serologic relationship of CVB4 to recent onset diabetic patients (Gamble et al. 1969). Although other enteroviruses may well be involved in induction of pancreatitis and type 1 diabetes (Tracy et al. 2010), the ability of CVBs to use the murine homolog of the coxsackievirus and adenovirus receptor CAR (Bergelson et al. 1997; Carson et al. 1997; Tomko et al. 1997; Bergelson et al. 1998) makes CVB-induced murine pancreatitis and diabetes a model for the human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Hello H, Davydova B, Smura T, Kaialainen S, Ylipaasto P, Saario E, Hovi T, Rieder E, Roivainen M (2005) Phenotypic and genetic changes in coxsackievirus B5 following repeated passage in mouse pancreas in vivo. J Med Virol 75:566–574

    Article  PubMed  CAS  Google Scholar 

  • Atkinson MA, Leiter EH (1999) The NOD mouse model of type 1 diabetes: as good as it gets? Nat Med 5:601–604

    Article  PubMed  CAS  Google Scholar 

  • Barral PM, Morrison JM, Drahos J, Gupta P, Sarkar D, Fisher PB, Racaniello VR (2007) MDA-5 is cleaved in poliovirus-infected cells. J Virol 81:3677–3684

    Article  PubMed  CAS  Google Scholar 

  • Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL, Finberg RW (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323

    Article  PubMed  CAS  Google Scholar 

  • Bergelson JM, Krithivas A, Celi L, Droguett G, Horwitz MS, Wickham T, Crowell RL, Finberg RW (1998) The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. J Virol 72:415–419

    PubMed  CAS  Google Scholar 

  • Bopegamage S, Kovacova J, Vargova A, Motusova J, Petrovicova A, Benkovicova M, Gomolcak P, Bakkers J, van Kuppeveld F, Melchers WJG, Galama JM (2005) Coxsackie B virus infection of mice: inoculation by the oral route protects the pancreas from damage, but not from infection. J Gen Virol 86:3271–3280

    Article  PubMed  CAS  Google Scholar 

  • Caggana M, Chan P, Ramsingh A (1993) Identification of a single amino acid residue in the capsid protein VP1 of coxsackievirus B4 that determines the virulent phenotype. J Virol 67: 4797–4803

    PubMed  CAS  Google Scholar 

  • Carson SD, Kim KS, Pirruccello SJ, Tracy S, Chapman NM (2007) Endogenous low-level expression of the coxsackievirus and adenovirus receptor enables coxsackievirus B3 infection of RD cells. J Gen Virol 88:3031–3038

    Article  PubMed  CAS  Google Scholar 

  • Carson SD, Chapman NM, Tracy SM (1997) Purification of the putative coxsackievirus B receptor from HeLa cells. Biochem Biophys Res Commun 233:325–328

    Article  PubMed  CAS  Google Scholar 

  • Chapman NM, Kim KS (2008) Persistent coxsackievirus infection: enterovirus persistence in chronic myocarditis and dilated cardiomyopathy. Curr Top Microbiol Immunol 323:275–292

    Article  PubMed  CAS  Google Scholar 

  • Chapman NM, Kim KS, Drescher KM, Oka K, Tracy S (2008) 5′ terminal deletions in the genome of a coxsackievirus B2 strain occurred naturally in human heart. Virology 375:480–491

    Article  PubMed  CAS  Google Scholar 

  • Chapman NM, Tu Z, Tracy S, Gauntt CJ (1994) An infectious cDNA copy of the genome of a non-cardiovirulent coxsackievirus B3 strain: its complete sequence analysis and comparison to the genomes of cardiovirulent coxsackieviruses. Arch Virol 135:115–130

    Article  PubMed  CAS  Google Scholar 

  • Coleman TJ, Gamble DR, Taylor KW (1973) Diabetes in mice after coxsackie B4 virus infection. Br Med J 3:25–27

    Article  PubMed  CAS  Google Scholar 

  • Coyne CB, Bergelson JM (2006) Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 124:119–131

    Article  PubMed  CAS  Google Scholar 

  • Drescher KM, Kono K, Bopegamage S, Carson SD, Tracy S (2004) Coxsackievirus B3 infection and type 1 diabetes development in NOD mice: insulitis determines susceptibility of pancreatic islets to virus infection. Virology 329:381–394

    Article  PubMed  CAS  Google Scholar 

  • Feuer R, Mena I, Pagarigan R, Slifka MK, Whitton JL (2002) Cell cycle status affects coxsackievirus replication, persistence, and reactivation in vitro. J Virol 76:4430–4440

    Article  PubMed  CAS  Google Scholar 

  • Filippi CM, Estes EA, Oldham JE, von Herrath MG (2009) Immunoregulatory mechanisms triggered by viral infections protect from type 1 diabetes in mice. J Clin Invest 119:1515–1523

    PubMed  CAS  Google Scholar 

  • Flodström-Tullberg M, Hultcrantz M, Stotland A, Maday A, Tsai D, Fine C, Williams B, Silverman R, Sarvetnick N (2005) RNase L and double-stranded RNA-dependent protein kinase exert complementary roles in islet cell defense during coxsackievirus infection. J Immunol 174:1171–1177

    PubMed  Google Scholar 

  • Gamble DR, Kinsley ML, FitzGerald MG, Bolton R, Taylor KW (1969) Viral antibodies in diabetes mellitus. Br Med J 3:627–630

    Article  PubMed  CAS  Google Scholar 

  • Harrison AK, Bauer SP, Murphy FA (1972) Viral pancreatitis: ultrastructural pathological effects of coxsackievirus B3 infection in newborn mouse pancreas. Exp Mol Pathol 17:206–219

    Article  PubMed  CAS  Google Scholar 

  • Huber S, Song WC, Sartini D (2006) Decay-accelerating factor (CD55) promotes CD1d expression and Vgamma4+ T-cell activation in coxsackievirus B3-induced myocarditis. Viral Immunol 19:156–166

    Article  PubMed  CAS  Google Scholar 

  • Huber SA, Sartini D (2005) Roles of tumor necrosis factor alpha (TNF-alpha) and the p55 TNF receptor in CD1d induction and coxsackievirus B3-induced myocarditis. J Virol 79:2659–2665

    Article  PubMed  CAS  Google Scholar 

  • Huber SA, Rincon M (2008) Coxsackievirus B3 induction of NFAT: requirement for myocarditis susceptibility. Virology 381:155–160

    Article  PubMed  CAS  Google Scholar 

  • Hühn MH, McCartney SA, Lind K, Svedin E, Colonna M, Flodström-Tullberg M (2010) Melanoma differentiation-associated protein-5 (MDA-5) limits early viral replication but is not essential for the induction of type 1 interferons after coxsackievirus infection. Virology 401:42–48

    Article  PubMed  Google Scholar 

  • Kang Y, Chatterjee NK, Nodwell MJ, Yoon JW (1994) Complete nucleotide sequence of a strain of coxsackie B4 virus of human origin that induces diabetes in mice and its comparison with nondiabetogenic coxsackie B4 JBV strain. J Med Virol 44:353–361

    Article  PubMed  CAS  Google Scholar 

  • Kanno T, Kim K, Kono K, Drescher KM, Chapman NM, Tracy S (2006) Group B coxsackievirus diabetogenic phenotype correlates with replication efficiency. J Virol 80:5637–5643

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh C-S, Reis E, Sousa C, Matsuura Y, Fujita T, Akira S (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105

    Article  PubMed  CAS  Google Scholar 

  • Kikutani H, Makino S (1992) The murine autoimmune diabetes model: NOD and related strains. Adv Immunol 51:285–322

    Article  PubMed  CAS  Google Scholar 

  • Kim K-S, Tracy S, Tapprich W, Bailey J, Lee C-K, Kim K, Barry WH, Chapman NM (2005) 5’-Terminal deletions occur in coxsackievirus B3 during replication in murine hearts and cardiac myocyte cultures and correlate with encapsidation of negative-strand viral RNA. J Virol 79:7024–7041

    Article  PubMed  CAS  Google Scholar 

  • Kim KS, Chapman NM, Tracy S (2008) Replication of coxsackievirus B3 in primary cell cultures generates novel viral genome deletions. J Virol 82:2033–2037

    Article  PubMed  CAS  Google Scholar 

  • Lacher MD, Tiirikainen MI, Saunier EF, Christian C, Anders M, Oft M, Baimain A, Akhurst RJ, Korn WM (2006) Transforming growth factor-beta receptor inhibition enhances adenoviral infectability of carcinoma cells via up-regulation of coxsackie and adenovirus receptor in conjunction with reversal of epithelial-mesenchymal transition. Cancer Res 66:1648–1657

    Article  PubMed  CAS  Google Scholar 

  • Lehuen A, Lantz O, Beaudoin L, Laloux V, Carnaud C, Bendelac A, Bach J-F, Monteiro RC (1998) Overexpression of natural killer T cells protects Valpha14-Jalpha281 transgenic nonobese diabetic mice against diabetes. J Exp Med 188:1831–1839

    Article  PubMed  CAS  Google Scholar 

  • Ly D, Mi QS, Hussain S, Delovitch TL (2006) Protection from type 1 diabetes by invariant NK T cells requires the activity of CD4+ CD25+ regulatory T cells. J Immunol 177:3695–3670

    PubMed  CAS  Google Scholar 

  • Mena I, Fischer C, Gebhard JR, Perry CM, Harkins S, Whitton JL (2000) Coxsackievirus infection of the pancreas: evaluation of receptor expression, pathogenesis, and immunopathology. Virology 271:276–288

    Article  PubMed  CAS  Google Scholar 

  • Nair S, Leung KC, Rawlinson WD, Naing Z, Craig ME (2010) Enterovirus infection induces cytokine and chemokine expression in insulin-producing cells. J Med Virol 82:1950–1957

    Article  PubMed  CAS  Google Scholar 

  • Naumov YN, Bahjat KS, Gausling R, Abraham R, Exley MA, Koezuka Y, Balk SB, Strominger JL, Clare-Salzer M, Wilson SB (2001) Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc Natl Acad Sci USA 98:13838–13843

    Article  PubMed  CAS  Google Scholar 

  • Pan J, Narayanan B, Shah S, Yoder JD, Cifuente JO, Hafenstein S, Bergelson JM (2011) Single amino acid changes in the virus capsid permit coxsackievirus B3 to bind decay-accelerating factor. J Virol 85:7436–7443

    Article  PubMed  CAS  Google Scholar 

  • Peng Y, Laouar Y, Li MO, Green EA, Flavell RA (2004) TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+ CD25+ regulatory T cells responsible for protection against diabetes. Proc Natl Acad Sci USA 101:4572–4577

    Article  PubMed  CAS  Google Scholar 

  • Richer MJ, Straka N, Fang D, Shanina I, Horwitz MS (2008) Regulatory T-cells protect from type 1 diabetes after induction by coxsackievirus infection in the context of transforming growth factor-beta. Diabetes 57:1302–1311

    Article  PubMed  CAS  Google Scholar 

  • Salpeter SJ, Klein AM, Huangfu D, Grimsby J, Dor Y (2010) Glucose and aging control the ­quiescence period that follows pancreatic beta cell replication. Development 137:3205–3213

    Article  PubMed  CAS  Google Scholar 

  • Serreze DV, Wasserfall C, Ottendorfer EW, Stalvey M, Pierce MA, Gauntt C, O’Donnell B, Flanagan JB, Campbell-Thompson M, Ellis TM, Atkinson MA (2005) Diabetes acceleration or prevention by a coxsackievirus B4 infection: critical requirements for both interleukin-4 and gamma interferon. J Virol 79:1045–1052

    Article  PubMed  CAS  Google Scholar 

  • Serreze DV, Ottendorfer EW, Ellis TM, Gauntt CJ, Atkinson MA (2000) Acceleration of type 1 diabetes by a coxsackievirus infection requires a preexisting critical mass of autoreactive T-cells in pancreatic islets. Diabetes 49:708–711

    Article  PubMed  CAS  Google Scholar 

  • Sharif S, Arreaza GA, Zucker P, Mi Q-S, Sondhi J, Naidenko OV, Kronenberg M, Koezuka Y, Delovitch TL, Gombert J-M, Leite-de-Moraes M, Gouarin C, Zhu R, Hameg A, Nakayama T, Taniguchi M, Lepault F, Lehuen A, Bach J-F, Herbelin A (2001) Activation of natural killer T cells by alpha-galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes. Nat Med 7:1057–1062

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Fukuoka M, Li G, Liu Y, Chen M, Konviser M, Chen X, Opavsky MA, Liu PP (2010) Regulatory T cells protect mice against coxsackievirus-induced myocarditis through the transforming growth factor beta-coxsackie-adenovirus receptor pathway. Circulation 121:2624–2634

    Article  PubMed  CAS  Google Scholar 

  • Titchener PA, Jenkins O, Szopa TM, Taylor KW, Almond JW (1994) Complete nucleotide sequence of a beta-cell tropic variant of coxsackievirus B4. J Med Virol 42:369–373

    Article  PubMed  CAS  Google Scholar 

  • Tomko RP, Xu R, Philipson L (1997) HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA 94:3352–3356

    Article  PubMed  CAS  Google Scholar 

  • Tracy S, Drescher KM, Chapman NM, Kim K-S, Carson SD, Pirruccello S, Lane PH, Romero JR, Leser JS (2002) Toward testing the hypothesis that group B coxsackieviruses (CVB) trigger insulin-dependent diabetes: inoculating nonobese diabetic mice with CVB markedly lowers diabetes incidence. J Virol 76:12097–12111

    Article  PubMed  CAS  Google Scholar 

  • Tracy S, Höfling K, Pirruccello S, Lane PH, Reyna SM, Gauntt CJ (2000) Group B coxsackievirus myocarditis and pancreatitis: connection between viral virulence phenotypes in mice. J Med Virol 62:70–81

    Article  PubMed  CAS  Google Scholar 

  • Tracy S, Drescher KM, Jackson JD, Kim K, Kono K (2010) Enteroviruses, type 1 diabetes and hygiene: a complex relationship. Rev Med Virol 20:106–116

    Article  PubMed  CAS  Google Scholar 

  • Viskari H, Ludvigsson J, Uibo R, Salur L, Marciulionyte D, Hermann R, Soltesz G, Füchtenbusch M, Ziegler A-G, Kondrashova A, Romanov A, Kaplan B, Laron Z, Koskela P, Vesikari T, Huhtala H, Knip M, Hyöty H (2005) Relationship between the incidence of type 1 diabetes and maternal enterovirus antibodies: time trends and geographical variation. Diabetologia 48: 1280–1287

    Article  PubMed  CAS  Google Scholar 

  • Wang JP, Cerny A, Asher DR, Kurt-Jones EA, Bronson RT, Finberg RW (2010) MDA5 and MAVS mediate type I interferon responses to coxsackie B virus. J Virol 84:254–260

    Article  PubMed  CAS  Google Scholar 

  • Webb SR, Loria RM, Madge GE, Kibrick S (1976) Susceptibility of mice to group B coxsackie virus is influenced by the diabetic gene. J Exp Med 143:1239–1248

    Article  PubMed  CAS  Google Scholar 

  • Weinzierl AO, Szalay G, Wolburg H, Sauter M, Rammensee H-G, Kandolf R, Stevanović S, Klingel K (2008) Effective chemokine secretion by dendritic cells and expansion of cross-presenting CD4−/CD8+ dendritic cells define a protective phenotype in the mouse model of coxsackievirus myocarditis. J Virol 82:8149–8160

    Article  PubMed  CAS  Google Scholar 

  • Yap IS, Giddings G, Pocock E, Chantler JK (2003) Lack of islet neogenesis plays a key role in beta-cell depletion in mice infected with a diabetogenic variant of coxsackievirus B4. J Gen Virol 84:3051–3068

    Article  PubMed  CAS  Google Scholar 

  • Yin H, Berg AK, Westman J, Hellerström C, Frisk G (2002) Complete nucleotide sequence of a coxsackievirus B-4 strain capable of establishing persistent infection in human pancreatic islet cells: effects on insulin release, proinsulin synthesis, and cell morphology. J Med Virol 68:544–557

    Article  PubMed  CAS  Google Scholar 

  • Yoon JW, Austin M, Onodera T, Notkins AL (1979) Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 300:1173–1179

    Article  PubMed  CAS  Google Scholar 

  • Yoon JW, Onodera T, Jenson AB, Notkins AL (1978a) Virus-induced diabetes mellitus. XI. Replication of coxsackie B3 virus in human pancreatic beta cell cultures. Diabetes 27:778–781

    Article  PubMed  CAS  Google Scholar 

  • Yoon JW, Onodera T, Notkins AL (1978b) Virus-induced diabetes mellitus. XV. Beta cell damage and insulin-dependent hyperglycemia in mice infected with coxsackie virus B4. J Exp Med 148:1068–1080

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora M. Chapman Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chapman, N.M. (2013). Enteroviruses in the Mouse Model of Type 1 Diabetes. In: Taylor, K., Hyöty, H., Toniolo, A., Zuckerman, A. (eds) Diabetes and Viruses. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4051-2_6

Download citation

Publish with us

Policies and ethics