Skip to main content

Antibody Detection: Principles and Applications

  • Chapter
  • First Online:
Advanced Techniques in Diagnostic Microbiology

Abstract

Antibody detection methods by immunoassay have been developed, commonly used, and will be expanded further for rapid and accurate diagnosis of the common or newly emerging infection-causing agents such as viruses in clinical as well as public health laboratories. Since the first competitive radioimmunoassay was developed over 50 years ago for human insulin detection [1], immunoassays have been developed with emphasis on fast and sensitive detection technologies and automation. Due to the demand of large screening for epidemiology, blood bank, prenatal care, and diagnosis of HIV and hepatitis, more immunodiagnostic procedures are performed using instruments and reagents similar to immunochemistry platforms used in clinical chemistry or core laboratory. Immunoassay for detection of host-produced antibodies directed against microorganisms, particularly viruses, has been one of the most widely used analytical techniques in laboratory medicine [2, 3]. Automation and random access application have been implemented for rapid diagnosis of infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yalow RS, Berson SA (1960) Immunoassay of endogenous plasma insulin in man. J Clin Invest 39:1157–1175

    Article  PubMed  CAS  Google Scholar 

  2. Peruski AH, Peruski LF Jr (2003) Immunological methods for detection and identification of infectious disease and biological warfare agents. Clin Diagn Lab Immunol 10:506–513

    PubMed  CAS  Google Scholar 

  3. Andreotti PE, Ludwig GV, Peruski AH, Tuite JJ, Morse SS, Peruski LF Jr (2003) Immunoassay of infectious agents. BioTechniques 35:850–859

    PubMed  CAS  Google Scholar 

  4. Kricka LJ (1991) Chemiluminescent and bioluminescent techniques. Clin Chem 37:1472–1481

    PubMed  CAS  Google Scholar 

  5. Engvall E, Perlmann P (1972) Enzyme-linked immunosorbent assay, ELISA: quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. J Immunol Methods 109:129–135

    CAS  Google Scholar 

  6. Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry 8:871–874

    Article  PubMed  CAS  Google Scholar 

  7. Wang YF, Eaton ME, Schuetz AN, Nesheim SR (2009) Human immunodeficiency virus. ASM, Washington, DC

    Google Scholar 

  8. Zuk RF, Ginsberg VK, Gouts T et al (1985) Enzyme immunochromatography: a quantitative immunoassay requiring no instrumentation. Clin Chem 31:1144–50

    PubMed  CAS  Google Scholar 

  9. Kricka LJ (1996) The clinical and research potential of bioluminescence and chemiluminescence in medicine. Wiley, Chichester

    Google Scholar 

  10. Weeks I, Wodhead JS (1991) Chemiluminescent assays based on acridinium labels. Wiley, Chichester

    Google Scholar 

  11. Yu H (1998) Comparative studies of magnetic particle-based solid phase fluorogenic and electrochemiluminescent immunoassay. J Immunol Methods 218:1–8

    Article  PubMed  CAS  Google Scholar 

  12. Haukanes BL, Kyam B (1993) Application of magnetic beads in bioassays. Biotechnology (N Y) 11:60–63

    Article  CAS  Google Scholar 

  13. Blackburn GF, Shah HP, Kenten JH et al (1991) Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnosis. Clin Chem 37:1534–1539

    PubMed  CAS  Google Scholar 

  14. Yang H, Leland JK, Massey RJ (1994) Electrochemiluminenscence: a new diagnostic and research tool. ECL detection technology promises scientist new “yardsticks” for quantification. Biotechnology (N Y) 12:193–194

    Article  CAS  Google Scholar 

  15. Peruski AH, Johnson LH, Peruski LF Jr (2002) Rapid and sensitive detection of biological warefare agents using time-resolved fluorescence assays. J Immunol Methods 263:35–41

    Article  PubMed  CAS  Google Scholar 

  16. Aggerbeck H, Norgaard-Pedersen B, Heron I (1996) Simultaneous quantitation of diphtheria and tetanus antibodies by double antigen, time-resolved fluorescence immunoassay. J Immunol Methods 190:171–183

    Article  PubMed  CAS  Google Scholar 

  17. Hemmila I, Dakubu S, Mukkala VM, Siitari H, Lovgren T (1984) Europium as a label in time-resolved immuofluorometric assays. Anal Biochem 137:335–43

    Article  PubMed  CAS  Google Scholar 

  18. McHugh TM (1994) Flow microsphere immunoassay for the quantitative and simultaneous detection of multiple soluble analytes. Methods Cell Biol 42:575–595

    Article  PubMed  CAS  Google Scholar 

  19. Horan PK, Wheeless LL (1977) Quantitative single cell analysis and sorting. Science 198:149–57

    Article  PubMed  CAS  Google Scholar 

  20. Fulton RJ, McDade RL, Smith PL, Kienker LJ, Kettman JR (1997) Advanced multiplexed analysis with the FlowMetrix system. Clin Chem 43:1749–1756

    PubMed  CAS  Google Scholar 

  21. Staros JV, Wright RW, Swingle DM (1986) Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Anal Biochem 156:220–222

    Article  PubMed  CAS  Google Scholar 

  22. Jones LP, Zheng HQ, Karron RA, Peret TCT, Tsou C, Anderson LA (2002) Multiplex assay for detection of strain-specific antibodies agains the two variable regions of the G protein of Respiratory Syncytial Virus. Clin Diagn Lab Immunol 9:633–638

    PubMed  CAS  Google Scholar 

  23. Vignali DA (2000) Multiplexed particle-based flow cytometric assays. J Immunol Methods 243:243–255

    Article  PubMed  CAS  Google Scholar 

  24. Mandy FF, Nakamura T, Bergeron M, Sekiguchi K (2001) Overview and application suspension array technology. Clin Lab Med 21:713–729

    PubMed  CAS  Google Scholar 

  25. Nieman T (1995) Chemiluminescence: theory and instrumentation, overview. In: Encyclopedia of analytical science. Academic, Orlando. pp 608–613

    Google Scholar 

  26. Campbell AK (1988) Detection and quantification of chemiluminescence. Ellis Horwood, Chichester

    Google Scholar 

  27. Berthrold F (1990) Instrumentation for chemiluminescence immunoassays. CRC, Boca Raton, FL

    Google Scholar 

  28. Nuwayhid NF (1995) Laboratory tests for detection of human immunodeficiency virus type 1 infection. Clin Diag Lab Immunol 2:637–645

    CAS  Google Scholar 

  29. Carson RT, Vignali DA (1999) Simultaneous quantitation of 15 cytokines using a multiplexed flow cytometric asssay. J Immunol Methods 227:41–52

    Article  PubMed  CAS  Google Scholar 

  30. Nielsen K, Bryson YJ (2000) Diagnosis of HIV infection in children. Pediatr Clin North Am 47:39–63

    Article  PubMed  CAS  Google Scholar 

  31. Porsch-Ozcurumez M, Kischel N, Priebe H, Splettstosser W, Finke E-J, Grunow R (2004) Comparison of enzyme-linked immunosorbent assay, western blotting, microagglutination, indirect immunofluorescence assay, and flow cytometry for serological diagnosis of tularemia. Clin Diag Lab Immunol 11:1008–15

    Google Scholar 

  32. MMWR (2000) Guidelines for surveillance, prevention, and control of West Nile virus infection—United States. MMWR Morb Mortal Wkly Rep 49:25–28

    Google Scholar 

  33. Nash D, Mostashari F, Fine A et al (2001) The outbreak of West Nile virus infection in the New York City area in 1999. N Engl J Med 344:1807–1814

    Article  PubMed  CAS  Google Scholar 

  34. Louie B, Pandori MW, Wong E, Klausner JD, Liska S (2006) Use of an acute seroconversion panel to evaluate a third-generation enzyme-linked immunoassay for detection of human immunodeficiency virus-specific antibodies relative to multiple other assays. J Clin Microbiol 44:1856–1858

    Article  PubMed  CAS  Google Scholar 

  35. Pandori MW, Hackett J Jr, Louie B et al (2009) Assessment of the ability of a fourth-generation immunoassay for human immunodeficiency virus (HIV) antibody and p24 antigen to detect both acute and recent HIV infections in a high-risk setting. J Clin Microbiol 47:2639–2642

    Article  PubMed  Google Scholar 

  36. Tunkel AR, Glaser CA, Bloch KC et al (2008) The management of encephalitis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 47:303–327

    Article  PubMed  CAS  Google Scholar 

  37. Dauphin G, Zientara S (2007) West Nile virus: recent trends in diagnosis and vaccine development. Vaccine 25:5563–5576

    Article  PubMed  CAS  Google Scholar 

  38. Martin DA, Biggerstaff BJ, Allen B, Johnson AJ, Lanciotti RS, Roehrig JT (2002) Use of immunoglobulin m cross-reactions in differential diagnosis of human flaviviral encephalitis infections in the United States. Clin Diagn Lab Immunol 9:544–549

    PubMed  CAS  Google Scholar 

  39. Lindsey HS, Calisher CH, Mathews JH (1976) Serum dilution neutralization test for California group virus identification and serology. J Clin Microbiol 4:503–510

    PubMed  CAS  Google Scholar 

  40. Herrmann S, Leshem B, Landes S, Rager-Zisman B, Marks RS (2005) Chemiluminescent optical fiber immunosensor for the detection of anti-West Nile virus IgG. Talanta 66:6–14

    Article  PubMed  CAS  Google Scholar 

  41. Jackson JB, Parsons JS, Nichols LS, Knoble N, Kennedy S, Piwowar EM (1997) Detection of human immunodeficiency virus type 1 (HIV-1) antibody by western blotting and HIV-1 DNA by PCR in patients with AIDS. J Clin Microbiol 35:1118–1121

    PubMed  CAS  Google Scholar 

  42. Owen SM, Yang C, Spira T et al (2008) Alternative algorithms for human immunodeficiency virus infection diagnosis using tests that are licensed in the United States. J Clin Microbiol 46:1588–1595

    Article  PubMed  CAS  Google Scholar 

  43. Ghany MG, Strader DB, Thomas DL, Seeff LB (2009) Diagnosis, management, and treatment of hepatitis C: an update. Hepatology 49:1335–1374

    Article  PubMed  CAS  Google Scholar 

  44. Delaney KP, Branson BM, Uniyal A et al (2011) Evaluation of the performance characteristics of 6 rapid HIV antibody tests. Clin Infect Dis 52:257–263

    Article  PubMed  CAS  Google Scholar 

  45. Lee SR, Yearwood GD, Guillon GB et al (2010) Evaluation of a rapid, point-of-care test device for the diagnosis of hepatitis C infection. J Clin Virol 48:15–17

    Article  PubMed  CAS  Google Scholar 

  46. Frazer IH (2010) Measuring serum antibody to human papillomavirus following infection or vaccination. Gynecol Oncol 118:S8–S11

    Article  PubMed  CAS  Google Scholar 

  47. Smith JF, Kowalski R, Esser MT, Brown MJ, Bryan JT (2008) Evolution of type-specific immunoassays to evaluate the functional immune response to Gardasil: a vaccine for human papillomavirus types 16, 18, 6 and 11. Hum Vaccin 4:134–142

    Article  PubMed  CAS  Google Scholar 

  48. Opalka D, Lachman CE, MacMullen SA et al (2003) Simultaneous quantitation of antibodies to neutralizing epitopes on virus-like particles for human papillomavirus types 6, 11, 16, and 18 by a multiplexed luminex assay. Clin Diagn Lab Immunol 10:108–115

    PubMed  CAS  Google Scholar 

  49. Maple PA, Gray J, Breuer J, Kafatos G, Parker S, Brown D (2006) Performance of a time-resolved fluorescence immunoassay for measuring varicella-zoster virus immunoglobulin G levels in adults and comparison with commercial enzyme immunoassays and Merck glycoprotein enzyme immunoassay. Clin Vaccine Immunol 13:214–218

    Article  PubMed  CAS  Google Scholar 

  50. ChrisMaple PA, Gray J, Brown K, Brown D (2009) Performance characteristics of a quantitative, standardised varicella zoster IgG time resolved fluorescence immunoassay (VZV TRFIA) for measuring antibody following natural infection. J Virol Methods 157:90–92

    Article  CAS  Google Scholar 

  51. McDonald SL, Maple PA, Andrews N et al (2011) Evaluation of the time resolved fluorescence immunoassay (TRFIA) for the detection of varicella zoster virus (VZV) antibodies following vaccination of healthcare workers. J Virol Methods 172:60–65

    Article  PubMed  CAS  Google Scholar 

  52. Nielsen K, Gall D, Jolley M et al (1996) A homogeneous fluorescence polarization assay for detection of antibody to Brucella abortus. J Immunol Methods 195:161–168

    Article  PubMed  CAS  Google Scholar 

  53. McHugh TM, Miner RC, Logan LH, Stites DP (1988) Simultaneous detection of antibodies to cytomegalovirus and herpes simplex virus by using flow cytometry and a microsphere-based fluorescence immunoassay. J Clin Microbiol 26:1957–1961

    PubMed  CAS  Google Scholar 

  54. Jani IV, Janossy G, Brown DW, Mandy F (2002) Multiplexed immunoassays by flow cytometry for diagnosis and surveillance of infectious diseases in resource-poor settings. Lancet Infect Dis 2:243–250

    Article  PubMed  CAS  Google Scholar 

  55. Scillian JJ, McHugh TM, Busch MP et al (1989) Early detection of antibodies against rDNA-produced HIV proteins with a flow cytometric assay. Blood 73:2041–2048

    PubMed  CAS  Google Scholar 

  56. Fonseca BP, Marques CF, Nascimento LD et al (2011) Development of a multiplex bead-based assay for detection of hepatitis C virus. Clin Vaccine Immunol 18:802–806

    Article  PubMed  CAS  Google Scholar 

  57. Kellar KL, Iannone MA (2002) Multiplexed microsphere-based flow cytometric assays. Exp Hematol 30:1227–1237

    Article  PubMed  CAS  Google Scholar 

  58. Martins TB (2002) Development of internal controls for the Luminex instrument as part of a multiplex seven-analyte viral respiratory antibody profile. Clin Diagn Lab Immunol 9:41–45

    PubMed  Google Scholar 

  59. Biagini RE, Sammons DL, Smith JP et al (2004) Comparison of a multiplexed fluorescent covalent microsphere immunoassay and an enzyme-linked immunosorbent assay for measurement of human immunoglobulin G antibodies to anthrax toxins. Clin Diagn Lab Immunol 11:50–55

    PubMed  CAS  Google Scholar 

  60. Quinn CP, Semenova VA, Elie CM et al (2002) Specific, sensitive, and quantitative enzyme-linked immunosorbent assay for human immunoglobulin G antibodies to anthrax toxin protective antigen. Emerg Infect Dis 8:1103–1110

    Article  PubMed  CAS  Google Scholar 

  61. Biagini RE, Schlottmann SA, Sammons DL et al (2003) Method for simultaneous measurement of antibodies to 23 pneumococcal capsular polysaccharides. Clin Diagn Lab Immunol 10:744–750

    PubMed  CAS  Google Scholar 

  62. Pickering JW, Martins TB, Schroder MC, Hill HR (2002) Comparison of a multiplex flow cytometric assay with enzyme-linked immunosorbent assay for auantitation of antibodies to tetanus, diphtheria, and Haemophilus influenzae Type b. Clin Diagn Lab Immunol 9:872–876

    PubMed  CAS  Google Scholar 

  63. Bellisario R, Colinas RJ, Pass KA (2001) Simultaneous measurement of antibodies to three HIV-1 antigens in newborn dried blood-spot specimens using a multiplexed microsphere-based immunoassay. Early Hum Dev 64:21–25

    Article  PubMed  CAS  Google Scholar 

  64. Faucher S, Martel A, Sherring A et al (2004) Protein bead array for the detection of HIV-1 antibodies from fresh plasma and dried-blood-spot specimens. Clin Chem 50:1250–1253

    Article  PubMed  CAS  Google Scholar 

  65. Lukacs Z, Dietrich A, Ganschow R, Kohlschutter A, Kruithof R (2005) Simultaneous determination of HIV antibodies, hepatitis C antibodies, and hepatitis B antigens in dried blood spots—a feasibility study using a multi-analyte immunoassay. Clin Chem Lab Med 43:141–145

    Article  PubMed  CAS  Google Scholar 

  66. Pickering JW, Martins TB, Greer RW et al (2002) A multiplexed fluorescent microsphere immunoassay for antibodies to pneumococcal capsular polysaccharides. Am J Clin Pathol 117:589–596

    Article  PubMed  CAS  Google Scholar 

  67. Shoma S, Verkaik NJ, de Vogel CP et al (2011) Development of a multiplexed bead-based immunoassay for the simultaneous detection of antibodies to 17 pneumococcal proteins. Eur J Clin Microbiol Infect Dis 30:521–526

    Article  PubMed  CAS  Google Scholar 

  68. Wong SJ, Demarest VL, Boyle RH et al (2004) Detection of human anti-flavivirus antibodies with a west nile virus recombinant antigen microsphere immunoassay. J Clin Microbiol 42:65–72

    Article  PubMed  CAS  Google Scholar 

  69. Johnson AJ, Cheshier RC, Cosentino G et al (2007) Validation of a microsphere-based immunoassay for detection of anti-West Nile virus and anti-St. Louis encephalitis virus immunoglobulin m antibodies. Clin Vaccine Immunol 14:1084–1093

    Article  PubMed  CAS  Google Scholar 

  70. Johnson AJ, Noga AJ, Kosoy O, Lanciotti RS, Johnson AA, Biggerstaff BJ (2005) Duplex microsphere-based immunoassay for detection of anti-West Nile virus and anti-St. Louis encephalitis virus immunoglobulin m antibodies. Clin Diagn Lab Immunol 12:566–574

    PubMed  CAS  Google Scholar 

  71. de Jager W, te Velthuis H, Prakken BJ, Kuis W, Rijkers GT (2003) Simultaneous detection of 15 human cytokines in a single sample of stimulated peripheral blood mononuclear cells. Clin Diagn Lab Immunol 10:133–139

    PubMed  Google Scholar 

  72. Binnicker MJ, Jespersen DJ, Harring JA, Rollins LO, Beito EM (2008) Evaluation of a multiplex flow immunoassay for detection of Epstein-Barr virus-specific antibodies. Clin Vaccine Immunol 15:1410–1413

    Article  PubMed  CAS  Google Scholar 

  73. Fiore M, Mitchell J, Doan T et al (1988) The Abbott IMx automated benchtop immunochemistry analyzer system. Clin Chem 34:1726–1732

    PubMed  CAS  Google Scholar 

  74. Hennig H, Schlenke P, Kirchner H, Bauer I, Schulte-Kellinghaus B, Bludau H (2000) Evaluation of newly developed microparticle enzyme immunoassays for the detection of HCV antibodies. J Virol Methods 84:181–190

    Article  PubMed  CAS  Google Scholar 

  75. Lazzarotto T, Galli C, Pulvirenti R et al (2001) Evaluation of the Abbott AxSYM cytomegalovirus (CMV) immunoglobulin M (IgM) assay in conjunction with other CMV IgM tests and a CMV IgG avidity assay. Clin Diagn Lab Immunol 8:196–198

    PubMed  CAS  Google Scholar 

  76. Li TM, Chuang T, Tse S, Hovanec-Burns D (2004) El Shami AS. Development and validation of a third generation allergen-specific IgE assay on the continuous random access IMMULITE 2000 analyzer. Ann Clin Lab Sci 34:67–74

    PubMed  CAS  Google Scholar 

  77. MMWR (2011) Discordant results from reverse sequence syphilis screening–five laboratories, United States, 2006–2010. MMWR Morb Mortal Wkly Rep 60:133–137

    Google Scholar 

  78. Binnicker MJ, Jespersen DJ, Rollins LO (2011) Treponema-specific tests for serodiagnosis of syphilis: comparative evaluation of seven assays. J Clin Microbiol 49:1313–1317

    Article  PubMed  CAS  Google Scholar 

  79. Marangoni A, Sambri V, Storni E, D’Antuono A, Negosanti M, Cevenini R (2000) Treponema pallidum surface immunofluorescence assay for serologic diagnosis of syphilis. Clin Diagn Lab Immunol 7:417–421

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun F. (Wayne) Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, Y.F., Kobayashi, M. (2013). Antibody Detection: Principles and Applications. In: Tang, YW., Stratton, C. (eds) Advanced Techniques in Diagnostic Microbiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3970-7_4

Download citation

Publish with us

Policies and ethics