Skip to main content

Degradation of Titanium and Its Alloys

  • Chapter
  • First Online:
Degradation of Implant Materials

Abstract

This chapter summarizes the state-of-the-art knowledge on the degradation modes of Ti and biomedically relevant Ti-based alloys. First, general aspects of passivity of Ti as well as special corrosion modes of passive Ti are shortly described. Then, the influence of alloying on the electrochemical dissolution modes is summarized, emphasizing the specific corrosion modes relevant for the biomedical application. Degradation of materials in biomedical applications can, in addition to purely chemical or electrochemical processes, be strongly influenced by mechanical/tribological processes. Therefore, tribocorrosion of Ti and Ti-based alloys is described. In addition, the role of the biological environment in the degradation process of Ti alloys is discussed. Moreover, a short discussion on some relevant implant design-related aspects of degradation is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brunette DM, Tengvall P, Textor M, Thomsen P (eds) (2001) Titanium in medicine. Springer, New York

    Google Scholar 

  2. Tengvall P, Lundström I (1992) Physico-chemical considerations of titanium as a biomaterial. ClinMater 9:115–134

    CAS  Google Scholar 

  3. Geetha M, Singh AK, Asokami R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425

    Article  CAS  Google Scholar 

  4. Schenk R (2001) The corrosion properties of titanium and titanium alloys. In: Brunette DM, Tengvall P, Textor M, Thomsen P (eds) Titanium in medicine. Springer, New York

    Google Scholar 

  5. Been J, Grauman JS (2000) Titanium and titanium alloys. In: Revie RW (ed) Uhlig’s corrosion handbook. Wiley, New York

    Google Scholar 

  6. Shoesmith DW, Noel JJ (2010) Corrosion of titanium and its alloys. In: Richardson TJA, Cottis R, Lindsay R, Stuart L, Scantlebury DJD, Graham MJ (eds) Shreir’s corrosion, vol 3. Elsevier, Oxford, UK

    Google Scholar 

  7. Long M, Rack HJ (1998) Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19:1621–1639

    Article  CAS  Google Scholar 

  8. Niinomi M (2008) Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater 1:30–42

    Article  Google Scholar 

  9. Fleck C, Eifler D (2010) Corrosion, fatigue and corrosion-fatigue behavior of metal implant materials, especially of titanium alloys. Int J Fatigue 32:929–935

    Article  CAS  Google Scholar 

  10. Hallab NJ, Jacobs JJ (2003) Orthopedic implant fretting corrosion. Corros Rev 21:183–213

    Article  CAS  Google Scholar 

  11. Syrett BC, Acharya A (eds) (1978) Corrosion and degradation of implant materials, ASTM STP 684. ASTM, Philadelphia

    Google Scholar 

  12. Fraker AC, Griffin CD (1985) Corrosion and degradation of implant materials, ASTM STP 859. ASTM, Philadelphia

    Book  Google Scholar 

  13. Kovacs P, Istephanous NS (eds) (1994) Compatibility of biomedical implants, proceedings volume 94-15. The Electrochemical Society, Pennington

    Google Scholar 

  14. Pourbaix M (1963) Atlas d’Equilibres Electrochimique. Gautiers-Billars & Vie, Paris

    Google Scholar 

  15. Fovet Y, Gal J-Y, Toumelin-Chemla F (2001) Influence of pH and fluoride concentration on titanium passivating layer: stability of titanium oxide. Talanta 53:1053–1063

    Article  CAS  Google Scholar 

  16. Robin A, Meirelis JP (2007) Influence of fluoride concentration and pH on corrosion behavior of titanium in artificial saliva. J Appl Electrochem 37:511–517

    Article  CAS  Google Scholar 

  17. Upadhyay D, Panchal MA, Dubey RS, Srivastava VK (2006) Corrosion of alloys used in dentistry—a review. Mater Sci Eng A 432:1–11

    Article  CAS  Google Scholar 

  18. Kelly EJ (1982) Electrochemical behavior of titanium. In: Bockris JOM, Conway BE, White RE (eds) Modern aspects of electrochemistry, No. 14, chapter 5. Plenum Press, New York

    Google Scholar 

  19. El-Taib Heakal F, Mokoda AS, Mazhar AA, El-Basiouny MS (1987) Kinetic studies on the dissolution of the anodic oxide film on titanium in phosphoric acid solutions. Corros Sci 27:453–482

    Article  CAS  Google Scholar 

  20. Blackwood DJ, Peter LM, Williams DE (1988) Stability and open circuit breakdown of the passive oxide film on titanium. Electrochim Acta 33:1143–1149

    Article  CAS  Google Scholar 

  21. Blackwood DJ, Greef R, Peter LM (1989) An ellipsometric study of the growth and open-circuit dissolution of the anodic oxide film on titanium. Electrochim Acta 34:875–880

    Article  CAS  Google Scholar 

  22. Yu SY, Brodwick CW, Ryan MR, Scully JR (1999) Effects of Nb and Zr alloying additions on the activation behavior of Ti in hydrochloric acid. J Electrochem Soc 146:4429–4438

    Article  CAS  Google Scholar 

  23. Azumi K, Nakajima M, Okamoto K, Seo M (2007) Dissolution of Ti wires in sulphuric acid and hydrochloric acid solutions. Corros Sci 49:469–480

    Article  CAS  Google Scholar 

  24. Aladjem A (1973) Review: anodic oxidation of titanium and its alloys. J Mater Sci 8:688–704

    Article  CAS  Google Scholar 

  25. Ghicov A, Schmuki P (2009) Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem Commun 20:2791–2808

    Article  CAS  Google Scholar 

  26. Schultze JW, Lohrengel MM (2000) Stability, reactivity and breakdown of passive films. Problems of recent and future research. Electrochim Acta 45:2499–2513

    Article  CAS  Google Scholar 

  27. Schmuki P (2002) From Bacon to barriers: a review on the passivity of metals and alloys. J Solid State Electrochem 6:145–164

    Article  CAS  Google Scholar 

  28. Zsklarska-Smialowska Z (1986) Pitting corrosion of metals. National Association of Corrosion Engineers, Houston, TX

    Google Scholar 

  29. Dugdale I, Cotton JB (1964) The anodic polarization of titanium in halide solutions. Corros Sci 4:397–400

    Article  CAS  Google Scholar 

  30. Beck TR (1973) Pitting of titanium. J Electrochem Soc 120:1310–1324

    Article  CAS  Google Scholar 

  31. Rätzer-Scheibe HJ (1978) Relationship between repassivation behavior and pitting corrosion. Corrosion 34:437–442

    Google Scholar 

  32. Burstein GT, Souto RM (1995) Observations of localized instability of passive titanium in chloride solutions. Electrochim Acta 40:1881–1888

    Article  CAS  Google Scholar 

  33. Burstein GT, Liu C, Souto RM (2005) The effect of temperature on the nucleation of corrosion pits on titanium in Ringer’s solution. Biomaterials 26:245–256

    Article  CAS  Google Scholar 

  34. Burstein GT, Liu C (2008) Depassivation current transients measured between identical twin microelectrodes in open circuit. Corros Sci 50:2–7

    Article  CAS  Google Scholar 

  35. Casillar N, Charlebois S, Smyrl WH (1994) Pitting corrosion of titanium. J Electrochem Soc 141:636–642

    Article  Google Scholar 

  36. Basame SB, White HS (2000) Pitting corrosion of titanium the relationship between pitting potential and competitive anion adsorption at the oxide film/electrolyte interface. J Electrochem Soc 147:1376–1381

    Article  CAS  Google Scholar 

  37. He X, Noel JJ, Shoesmith DW (2002) Temperature dependence of crevice corrosion initiation on titanium grade-2. J Electrochem Soc 149:B440–B449

    Article  CAS  Google Scholar 

  38. Virtanen S (2008) Corrosion of biomedical implant materials. Corros Rev 26:147–171

    Article  CAS  Google Scholar 

  39. Mogoda AS, Ahmad YH, Badawy WA (2004) Corrosion behavior of Ti-6Al-4V alloy in concentrated hydrochloric and sulfuric acids. J Appl Electrochem 34:873–878

    Article  CAS  Google Scholar 

  40. Willert H-G, Brobäck L-G, Buchhorn GH, Jensen PH, Köster G, Ochsner P, Schenk R (1996) Crevice corrosion of cemented titanium alloy stems in total hip replacements. Clin Orthop Relat Res (333):51–75

    Google Scholar 

  41. Thomas SR, Shukla D, Latham PD (2004) Corrosion of cemented titanium femoral stems. J Bone Joint Surg 86-B:974–978

    Article  Google Scholar 

  42. Kumar S, Sivakumar S, Sankara Narayanan TSN, Ganesh Sundara Raman S, Seshadri SK (2010) Fretting-corrosion mapping of CP-Ti in Ringer’s solution. Wear 268:1537–1541

    Article  CAS  Google Scholar 

  43. Kumar S, Narayanan TSNS, Ganesh Sundara Raman S, Seshadri SK (2010) Surface modification of CP-Ti to improve the fretting-corrosion resistance: thermal oxidation vs. anodizing. Mater Sci Eng C 30:921–927

    Article  CAS  Google Scholar 

  44. Ruzickova M, Hildebrand H, Virtanen S (2005) On the stability of passivity of Ti-Al alloys in acidic environment. Z Phys Chem 219:1447–1459

    Article  CAS  Google Scholar 

  45. Metikos-Hukovic M, Kwokal A, Pilkac J (2003) The influence of niobium and vanadium passivity of titanium-based implants in physiological solution. Biomaterials 24:3765–3775

    Article  CAS  Google Scholar 

  46. Milosev I, Metikos-Hukovic M, Strehblow H-H (2000) Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy. Biomaterials 21:2103–2113

    Article  CAS  Google Scholar 

  47. Milosev I, Kosec T, Strehblow H-H (2008) XPS and EIS study of the passive film formed on orthopaedic Ti-6Al-7Nb alloy in Hank’s physiological solution. Electrochim Acta 52:3547–3558

    Article  CAS  Google Scholar 

  48. Landolt D, Mischler S, Stemp M (2001) Electrochemical methods in tribocorrosion: a critical appraisal. Electrochim Acta 46:3913–3929

    Article  CAS  Google Scholar 

  49. Mischler S (2008) Triboelectrochemical techniques and interpretation methods in tribocorrosion: a comparative evaluation. Tribol Int 41:573–583

    Article  CAS  Google Scholar 

  50. Khan MA, Williams RL, Williams DF (1996) In-vitro corrosion and wear of titanium alloys in the biological environment. Biomaterials 17:2117–2126

    Article  CAS  Google Scholar 

  51. Barril S, Mischler S, Landolt D (2004) Influence of fretting regimes on the tribocorrosion behaviour of Ti6Al4V in 0.9 wt-% sodium chloride solution. Wear 256:963–972

    Article  CAS  Google Scholar 

  52. Barril S, Mischler S, Landolt D (2005) Electrochemical effects of the fretting corrosion behavior of Ti6Al4V in 0.9 wt-% sodium chloride solution. Wear 259:282–291

    Article  CAS  Google Scholar 

  53. Mischler S, Barril S, Landolt D (2009) Fretting corrosion behaviour of Ti-6Al-4V/PMMA contact in simulated body fluid. Tribol Mater Surf Interfaces 3:16–23

    Article  CAS  Google Scholar 

  54. Hanawa T (2004) Metal ion release from metal implants. Mater Sci Eng C 24:745–752

    Article  CAS  Google Scholar 

  55. Kolman DG, Scully JR (1996) On the repassivation behavior of high-purity titanium and selected α, β, and β + α alloys in aqueous chloride solutions. J Electrochem Soc 143:1847–1860

    Article  CAS  Google Scholar 

  56. Beck TR (1973) Electrochemistry of freshly-generated titanium surface—I. Scraped-rotating-disk experiments. Electrochim Acta 18:807–814

    Article  CAS  Google Scholar 

  57. Beck TR (1973) Electrochemistry of freshly-generated titanium surface—II. Rapid fracture experiments. Electrochim Acta 18:815–827

    Article  CAS  Google Scholar 

  58. Buhl H (1973) Repassivation behavior of the titanium alloy TiAl6V4 in aqueous sodium halides. Corros Sci 13:639–646

    Article  CAS  Google Scholar 

  59. Raetzer-Scheibe H-J, Buhl H (1979) Zum Repassivierungsverhalten metallischer Werkstoffe am Beispiels einer Titanlegierung—Contribution to the understanding of repassivation behavior for a titanium alloy. Werkst Korros 30:846–853

    Article  CAS  Google Scholar 

  60. Gilbert JL, Buckley CA, Lautenschlager EP (1996) Titanium oxide film fracture and repassivation: the effect of potential, pH and aeration. In: Brown SA, Lemons JE (eds) Medical applications of titanium and its alloys: the material and biological issues, ASTM STP 1272. American Society for Testing and Materials, Philadelphia, pp 199–215

    Chapter  Google Scholar 

  61. Goldberg JR, Gilbert JL (2004) The electrochemical and mechanical behavior of passivated and TiN/AlN-coated CoCrMo and Ti6Al4V alloys. Biomaterials 25:851–864

    Article  CAS  Google Scholar 

  62. Lausmaa J (1996) Surface spectroscopic characterization of titanium implant materials. J Electron Spectrosc Rel Phen 31:343–361

    Article  Google Scholar 

  63. Sittig C, Hähner G, Marti A, Textor M, Spencer ND, Hauert R (1999) The implant material, Ti6Al7Nb: surface microstructure, composition and properties. J Mater Sci Mater Med 10:191–198

    Article  CAS  Google Scholar 

  64. Schuh A, Bigoney J, Hönle W, Zeiler G, Holzwarth U, Forst R (2007) Second generation (low modulus) titanium alloys in total hip arthoplasty. Materialwiss Werkst 38:1003–1007

    Article  CAS  Google Scholar 

  65. Guillemot F (2005) Recent advances in the design of titanium alloys for orthopedic applications. Exp Rev Med Dev 2:741–748

    Article  CAS  Google Scholar 

  66. Davidson JA, Mishra AK, Kovacs P, Poggie RA (1994) New surface-hardened, low-modulus, corrosion-resistant Ti13Nb13Zr alloy for total hip arthoplasty. Biomed Mater Eng 4:231–243

    CAS  Google Scholar 

  67. Niinomi M (2003) Fatigue performance and cyto-toxicity of low rigidity titanium alloys Ti-29Nb-13Ta-4.6Zr. Biomaterials 24:2673–2683

    Article  CAS  Google Scholar 

  68. Yu SY, Scully JR (1997) Corrosion and passivity of Ti-13%Nb-13%Zr in comparison to other biomedical implant alloys. Corrosion 53:965–976

    Article  CAS  Google Scholar 

  69. Robin A, Carvalho OAS, Schneider SG, Schneider S (2008) Corrosion behavior of Ti-xNb-13Zr alloys in Ringer’s solution. Mater Corros 59:929–933

    Article  CAS  Google Scholar 

  70. Khan MA, Williams RL, Williams DF (1999) Conjoint corrosion and wear in titanium alloys. Biomaterials 20:765–772

    Article  CAS  Google Scholar 

  71. Akahori T, Niinomi M, Fukui H, Suzuki A (2004) Fatigue, fretting fatigue and corrosion characteristics of biocompatible beta type titanium alloy conducted with various thermo-mechanical treatments. Mater Trans 45:1540–1548

    Article  CAS  Google Scholar 

  72. Zhoua YL, Niinomi M, Akahori T, Fukui H, Toda H (2005) Corrosion resistance and biocompatibility of Ti-Ta alloys for biomedical applications. Mater Sci Eng A 398:28–36

    Article  CAS  Google Scholar 

  73. Virtanen S, Milosev I, Gomez-Barrena E, Trebse R, Salo J, Konttinen YT (2008) Special modes of corrosion under physiological and simulated physiological conditions. Acta Biomater 4:468–476

    Article  CAS  Google Scholar 

  74. Hiromoto S, Hanawa T (2006) Corrosion of implant metals in the presence of cells. Corros Rev 24:323–352

    Article  CAS  Google Scholar 

  75. Galante JO, Lemons J, Spector M, Wilson PD Jr, Wright TM (1991) Review. The biologic effect of implant materials. J Orthop Res 9:760–775

    Article  CAS  Google Scholar 

  76. Bundy KJ (1994) Corrosion and other electrochemical aspects of biomaterials. Crit Rev Biomed Eng 22:139–251

    CAS  Google Scholar 

  77. Mathew MT, Srinisiva Pai P, Pourzal R, Fischer A, Wimmer MA (2009) Significance of tribocorrosion in biomedical applications: overview and current status. Adv Tribol; article no. 250986

    Google Scholar 

  78. Cadosch D, Chan E, Gautschi OP, Filgueira L (2009) Metal is not inert: role of metal ions released by biocorrosion in aseptic loosening—current concepts. J Biomed Mater Res 91A:1252–1262

    Article  CAS  Google Scholar 

  79. Alves VA, Reis RQ, Santos ICB, Souza DG, de F Goncalves T, Pereira-da-Silva MA, Rossi A, da Silva LA (2009) In situ impedance spectroscopy study of the electrochemical corrosion of Ti and Ti-6Al-4V in simulated body fluid at 25°C and 37°C. Corros Sci 51:2473–2482

    Article  CAS  Google Scholar 

  80. Hodgson AWE, Mueller Y, Forster D, Virtanen S (2002) Electrochemical characterization of passive film on Ti alloys under simulated biological conditions. Electrochim Acta 47:1913–1923

    Article  CAS  Google Scholar 

  81. Hanawa T, Ota M (1991) Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials 12:767–774

    Article  CAS  Google Scholar 

  82. Sousa SR, Barbosa MA (1993) Corrosion resistance of titanium cp in saline physiological solution with calcium phosphate and proteins. Clin Mater 14:287–294

    Article  CAS  Google Scholar 

  83. Wu W, Nancollas GH (1998) Kinetics of heterogeneous nucleation of calcium phosphates on anatase and rutile. J Colloid Interface Sci 199:206–211

    Article  CAS  Google Scholar 

  84. Li P, Ducheyne P (1998) Quasi-biological apatite film induced by titanium in a simulated body fluid. J Biomed Mater Res 41:341–348

    Article  CAS  Google Scholar 

  85. Frauchiger L, Taborelly M, Aronsson BO, Descouts P (1999) Ion adsorption on titanium surfaces exposed to a physiological solution. Appl Surf Sci 143:57–77

    Article  Google Scholar 

  86. Healy KE, Ducheyne P (1992) Hydration and preferential molecular adsorption on titanium in vitro. Biomaterials 13:553–561

    Article  CAS  Google Scholar 

  87. Sundgren JE, Bodo P, Lundstrom I (1986) Auger electron spectroscopic study of the interface between human tissue and implants of titanium and stainless steel. J Colloid Interface Sci 110:9–20

    Article  CAS  Google Scholar 

  88. Lima J, Sousa SR, Ferreira A, Barbosa MA (2001) Interactions between calcium, phosphate, and albumin on the surface of titanium. J Biomed Mater Res 55:45–53

    Article  CAS  Google Scholar 

  89. Ban S, Maruno S (1995) Effect of temperature on electrochemical deposition of calcium phosphate coatings in a simulated body fluid. Biomaterials 16:977–981

    Article  CAS  Google Scholar 

  90. Eliaz N, Kopelovitch W, Burstein L, Kobayashi E, Hanawa T (2008) Electrochemical processes of nucleation and growth of calcium phosphate on titanium supported by real-time quartz crystal microbalance measurements and X-ray photoelectron spectroscopy analysis. J Biomed Mater Res 89A:270–280

    Article  CAS  Google Scholar 

  91. Narayanan R, Seshadri SK, Kwon TY, Kim KH (2008) Calcium phosphate-based coatings on titanium and its alloys. J Biomed Mater Res B 85:279–299

    CAS  Google Scholar 

  92. Cheng R, Roscoe SG (2005) Corrosion behavior of titanium in the presence of calcium phosphate and serum proteins. Biomaterials 26:7350–7356

    Article  CAS  Google Scholar 

  93. Alkhateeb E, Virtanen S (2005) Influence of surface self-modification in Ringer’s solution on the passive behavior of titanium. J Biomed Mater Res A 75:934–940

    CAS  Google Scholar 

  94. Hanawa T, Asami K, Asaoka K (1998) Repassivation of titanium and surface oxide film regenerated in simulated bioliquid. J Biomed Mater Res 40:530–538

    Article  CAS  Google Scholar 

  95. Clark GCF, Williams DF (1982) The effects of proteins on metallic corrosion. J Biomed Mater Res 16:125–134

    Article  CAS  Google Scholar 

  96. Williams RL, Brown SA, Merritt K (1988) Electrochemical studies on the influence of proteins on the corrosion of implant alloys. Biomaterials 9:181–186

    Article  CAS  Google Scholar 

  97. Burgos-Asperilla L, Garcia-Alonso MC, Escudero ML, Alonso C (2010) Study of the interaction of inorganic and organic compounds of cell culture medium with a Ti surface. Acta Biomater 6:652–661

    Article  CAS  Google Scholar 

  98. Ehrenberger MT, Gilbert JL (2010) The effect of scanning electrochemical potential on the short-term impedance of commercially pure titanium in simulated biological conditions. J Biomed Mater Res 94A:781–789

    Google Scholar 

  99. Khan MA, Williams RL, Williams DF (1999) The corrosion behavior of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions. Biomaterials 20:631–637

    Article  CAS  Google Scholar 

  100. Hanawa T, Kohayama Y, Hiromoto S, Yamamoto A (2004) Effects of biological factors on the repassivation current of titanium. Mater Trans 45:1635–1639

    Article  CAS  Google Scholar 

  101. Hiromoto S, Mischler S (2006) The influence of proteins on the fretting-corrosion behavior of a Ti6Al4V alloy. Wear 261:1002–1011

    Article  CAS  Google Scholar 

  102. Mu Y, Kobayashi T, Sumita M, Yamamoto Y, Hanawa T (2000) Metal ion release from titanium with active oxygen species generated by rat macrophages in vitro. J Biomed Mater Res 49:238–243

    Article  CAS  Google Scholar 

  103. Lin H-Y, Bumgardner JL (2004) In vitro biocorrosion of Ti-6Al-4V implant alloy by a mouse macrophage cell line. J Biomed Mater Res 68A:717–724

    Article  CAS  Google Scholar 

  104. Lin H-Y, Bumgardner JL (2004) Changes in the surface composition of the Ti-6Al-4V implant alloy by cultured macrophage cells. Appl Surf Sci 225:21–28

    Article  CAS  Google Scholar 

  105. Hiromoto S, Noda K, Hanawa T (2002) Development of electrolytic cell with cell-culture for metallic biomaterials. Corros Sci 44:955–965

    Article  CAS  Google Scholar 

  106. Hiromoto S, Noda K, Hanawa T (2002) Electrochemical properties of an interface between titanium and fibroblasts L929. Electrochim Acta 48:387–396

    Article  CAS  Google Scholar 

  107. Garcia-Alonso MC, Saldana L, Alonso C, Barranco V, Munoz-Morris MA, Escudero ML (2009) In situ cell culture monitoring on a Ti-6Al-4V surface by electrochemical techniques. Acta Biomater 5:1374–1384

    Article  CAS  Google Scholar 

  108. Hiromoto S, Hanawa T, Asami K (2004) Composition of surface oxide films of titanium with culturing murine fibroblasts L929. Biomaterials 25:979–986

    Article  CAS  Google Scholar 

  109. Hiromoto S, Hanawa T (2004) pH near cells on stainless steel and titanium. Electrochem Solid State Lett 7:B9–B11

    Article  CAS  Google Scholar 

  110. Tengvall P, Elwing H, Sjöqvist L, Lundström I (1989) Interaction between hydrogen peroxide and titanium: a possible role in the biocompatibility of titanium. Biomaterials 10:118–120

    Article  CAS  Google Scholar 

  111. Pan J, Thierry D, Leygraf C (1996) Hydrogen peroxide toward enhanced oxide growth on titanium in PBS solution: blue coloration and clinical relevance. J Biomed Mater Res 30:393–402

    Article  CAS  Google Scholar 

  112. Pan J, Liao H, Leygraf C, Thierry D, Li J (1998) Variation of oxide films on titanium induced by osteoblast-like cell culture and the influence of an H2O2 pretreatment. J Biomed Mater Res 40:244–256

    Article  CAS  Google Scholar 

  113. Bearinger JP, Orme CA, Gilbert JL (2003) Effect of hydrogen peroxide on titanium surface: in situ imaging and step-polarization impedance spectroscopy of commercially pure titanium and titanium, 6-aluminum,4-vanadium. J Biomed Mater Res 67A:702–712

    Article  CAS  Google Scholar 

  114. Virtanen S, Isaacs HS, Schmuki P (2002) In situ X-ray absorption near edge studies of mechanisms of passivity. Electrochim Acta 47:3117–3125

    Article  CAS  Google Scholar 

  115. Tsaryk R, Kalbacova M, Hempel U, Scharnweber D, Unger RE, Dieter P, Kirkpatrick CJ, Peters K (2007) Response of human endothelial cells to oxidative stress on Ti6Al4V alloy. Biomaterials 28:806–813

    Article  CAS  Google Scholar 

  116. Ehrensberger MT, Sivan S, Gilbert JL (2009) Titanium is not “the most biocompatible metal” under cathodic potential: the relationship between voltage and MC3T3 preosteoblast behavior on electrically polarized cpTi surfaces. J Biomed Mater Res 93A:1500–1509

    Google Scholar 

  117. Serhan H, Slivka M, Albert T, Kwak SD (2004) Is galvanic corrosion between titanium alloy and stainless steel spinal implant a clinical concern? Spine J 4:379–387

    Article  Google Scholar 

  118. Mueller Y, Tognini R, Mayer J, Virtanen S (2007) Anodized titanium and stainless steel in contact with CFRP: an electrochemical approach considering galvanic corrosion. J Biomed Mater Res 82A:936–946

    Article  CAS  Google Scholar 

  119. Marek M, Pawar V, Tsai S, Thomas R, Sprague J, Salehi A, Hunter G (2006) Galvanic corrosion evaluation of Zr-25Nb coupled with orthopaedic alloys. In: Medical device materials III, vol 2006., pp 195–201

    Google Scholar 

  120. Griffin CD, Buchanan RA, Lemons JE (1983) In vitro electrochemical corrosion study of coupled surgical implant materials. J Biomed Mater Res 17:489–500

    Article  CAS  Google Scholar 

  121. Konttinen YT, Takagi M, Mandelin J, Lassus J, Salo J, Ainola M (2001) Acid attack and cathepsin K in bone resorption around total hip replacements. J Bone Miner Res 16:1780–1786

    Article  CAS  Google Scholar 

  122. Schöll E, Eggli S, Ganz R (2000) Osteolysis in cemented titanium alloy hip prosthesis. J Arthoplasty 15:570–575

    Article  Google Scholar 

  123. Kovac S, Trebse R, Milosev I, Pavlovcic V, Pisot V (2006) Long-term survival of a cemented titanium-aluminum-vanadium alloy straight-stem femoral component. J Bone Joint Surg 88:1567–1573

    Article  CAS  Google Scholar 

  124. Paliwal M, Gordon Allan D, Filip P (2010) Failure analysis of three uncemented titanium-alloy modular total hip stems. Eng Fail Anal 17:1230–1238

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sannakaisa Virtanen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Virtanen, S. (2012). Degradation of Titanium and Its Alloys. In: Eliaz, N. (eds) Degradation of Implant Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3942-4_2

Download citation

Publish with us

Policies and ethics