Skip to main content

The Equivalence Principle, Special Relativity, and Newton’s Gravitational Law

  • Chapter
  • First Online:
Gravity, Special Relativity, and the Strong Force

Abstract

Special relativity dictates that, for the laboratory observer, the inertial mass, m i, of a particle with rest mass m o performing a linear motion is γ3 m o, where γ is the Lorentz factor. Using instantaneous inertial frames one shows that this result is valid also for arbitrary particle motion, including circular orbits. In view of the equivalence principle, however, this implies that the gravitational particle mass, m g, also equals γ3 m o. Therefore the combination of special relativity and of the equivalence principle introduces a γ6 correction term to Newton’s gravitational law under relativistic conditions. The gravitational force becomes unbound and can exceed the magnitude of any other force as { v} approaches the speed of light c. How can one explain that this amazing result has not been discussed before? Could it be that we do not pay sufficient attention to special relativity and to the equivalence principle?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roll PG, Krotkov R, Dicke RG (1964) The equivalence of inertial and passive gravitational mass. Annals of Physics 26(3):442–517

    Article  Google Scholar 

  2. Gillies GT (1997) The Newtonian gravitational constant: recent measurements and related studies. Rep Prog Phys 60:151–225

    Article  Google Scholar 

  3. Mohr PG, Taylor BN (2005) CODATA recommended values of the fundamental physical constants: 2002. Rev Mod Phys 77:1–107

    Article  CAS  Google Scholar 

  4. Einstein A (1905) Zür Elektrodynamik bewegter Körper. Ann der Physik Bd. XVII, S. 17:891–921; English translation On the Electrodynamics of Moving Bodies (http://fourmilab.ch/etexts/einstein/specrel/www/)) by G.B. Jeffery and W. Perrett (1923)

  5. Einstein A (1905) Ann d Phys 17:132–148

    Article  CAS  Google Scholar 

  6. Einstein A (1907) Über die vom Relativitätsprinzip geforderte Trägheit der Energie. Ann der Physik Bd. XXIII, S. 371–384

    Google Scholar 

  7. Einstein A (1916) Die Grundlagen der allgemeinen Relativitätstheorie. Ann der Physik Bd. XLIX, S. 769–822

    Google Scholar 

  8. Einstein A (1917) Über die spezielle und die allgemeine Relativitätstheorie, gemeinverständlich, Braunschweig

    Google Scholar 

  9. Dyson FW, Eddington AS, Davidson C (1920) A determination of the deflection of light by the Sun’s gravitational field, from observations made at the total eclipse of May 29, 1919. Phil Trans Roy Soc Lond A 220:291–333

    Article  Google Scholar 

  10. French AP (1968) Special relativity. W. W. Norton and Co., New York

    Google Scholar 

  11. Freund J (2008) Special relativity for beginners. World Scientific Publishing, Singapore

    Book  Google Scholar 

  12. Gundlach JH, Merkowitz SM (2000) Measurement of Newton’s constant using a torsion balance with angular acceleration feedback. Phys Rev Lett 85(14):2869–2872

    Article  CAS  Google Scholar 

  13. Hoyle CD et al (2001) Sub-millimeter tests of the gravitational Inverse-Square Law: a search for “Large” extra dimensions. Phys Rev Lett 86:1418–1421

    Article  CAS  Google Scholar 

  14. Einstein A (1911) Über den Einfluss der Schwerkraft auf die Ausbereitung des Lichtes. Ann der Physik Bd. XXXV, S. 898–908

    Google Scholar 

  15. Weinberg S (1972), Gravitation and cosmology. Wiley, New York

    Google Scholar 

  16. Wilhelm K, Dwivedi BN (2011) An explanation of the Pioneer anomaly involving accelerated atomic clocks. Astrophys SpaceSci Trans 7:487–494

    Article  CAS  Google Scholar 

  17. Adler R, Bazin M, Schiffer M (1975) Introduction to general relativity. McGraw-Hill, New  York

    Google Scholar 

  18. Schwarz PM, Schwarz JH (2004) Special relativity: from Einstein to strings. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vayenas, C.G., Souentie, S.NA. (2012). The Equivalence Principle, Special Relativity, and Newton’s Gravitational Law. In: Gravity, Special Relativity, and the Strong Force. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3936-3_5

Download citation

Publish with us

Policies and ethics