Skip to main content

1905–1930: The Golden Age of Physics

  • Chapter
  • First Online:
Gravity, Special Relativity, and the Strong Force

Abstract

The synthesis of classical mechanics, of the Coulomb law of electrostatics and of the condition of angular momentum quantization, later replaced by the mathematically equivalent de Broglie wavelength expression, led a century ago to the rotating electron Bohr model of the H atom. This model provided a very successful description of all previous related spectroscopic data. In subsequent decades both the classical mechanical part of the model and thus unavoidably also the de Broglie wavelength expression part were replaced in the Schrödinger formalism by the electron wavefunction, although the results of this probabilistic quantum mechanical formulation were in excellent agreement with those of the classical deterministic Bohr or Bohr-Sommerfeld models. What is the equivalent deterministic Bohr-type rotating particle model combining classical mechanics, generalized perhaps to include special relativity, gravitational attraction in addition to, or rather than, Coulombic attraction and the de Broglie wavelength expression? To what physical problem such a model corresponds to? This is the question presented and analyzed in this book. The result is surprising and fascinating. When examining three rotating particles with the mass of a neutrino each, then, one finds without any adjustable parameters, that the corresponding rotational states correspond to a neutron. The rotating relativistic neutrinos act as quarks and the action of the relativistic gravitational attraction is equivalent to the action of gluons. Agreement with experiment is at least semiquantitative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Einstein A (1905) Zür Elektrodynamik bewegter Körper. Ann der Physik Bd. XVII, S. 17:891–921; English translation On the Electrodynamics of Moving Bodies (\url{http://fourmilab.ch/etexts/einstein/specrel/www/}) by G.B. Jeffery and W. Perrett (1923)

  2. Bohr N (1913) On the constitution of atoms and molecules. Part I Philos Mag 26:1–25

    Article  CAS  Google Scholar 

  3. De Broglie L (1923) Waves and quanta. Nature 112:540

    Article  Google Scholar 

  4. Schrödinger E (1926) Naturwissenschaften 14:664

    Article  Google Scholar 

  5. Schrödinger E (1928) Collected papers on wave mechanics. Blackie & Son, London, p 41

    Google Scholar 

  6. Schwarz PM, Schwarz JH (2004) Special relativity: from einstein to strings. Cambridge University Press, Cambridge

    Book  Google Scholar 

  7. Fukuda Y et al (1998) Phys Rev Lett 81:1562–1567

    Article  CAS  Google Scholar 

  8. Mohapatra RN et al (2007) Rep Prog Phys 70:1757–1867

    Article  CAS  Google Scholar 

  9. Collision course (2011) What will scientists do if they fail to find the Higgs boson? Nature 479:6

    Google Scholar 

  10. Wheeler JA (1955) Phys Rev 97(2):511

    Article  Google Scholar 

  11. Rovelli C (2004) Quantum gravity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  12. Karamanolis S (1992) Albert Einstein für Anfänger, Elektra Verlags-GmbH, München

    Google Scholar 

  13. Einstein A (1916) Die Grundlagen der allgemeinen Relativitätstheorie. Ann der Physik Bd. XLIX, S. 769–822

    Google Scholar 

  14. Serway RA, Jewett JW (2009) Physics for scientists and engineers. Modern Physics, Brooks/ Cole Publ Co, Pacific Grove, California, USA

    Google Scholar 

  15. Sommerfeld A (1930) Atomic structure and spectral lines. Methuen

    Google Scholar 

  16. Born M (1969) Atomic physics. R. and R. Clark, Edinburgh (English edition)

    Google Scholar 

  17. t’ Hooft G (1997) Quantum mechanical behaviour in a deterministic model. Found Phys Lett 10:105–111

    Google Scholar 

  18. t’ Hooft G (1999) Quantum gravity as a dissipative deterministic system. Class Quantum Grav 16:3263–3279

    Google Scholar 

  19. t’ Hooft G (2005) In: Elitzur A et al (eds.) Determinism beneath Quantum Mechanics, Quo Vadis Quantum Mechanics, The Frontiers Collection. Springer, Berlin. ISBN 1612–3018, pp 99–111; quant-ph/0212095

    Google Scholar 

  20. t’ Hooft G (2005) Does God play dice? Phys World 18(12)

    Google Scholar 

  21. French AP (1968) Special relativity. W. W. Norton and Co., New York

    Google Scholar 

  22. Freund J (2008) Special relativity for beginners. World Scientific Publishing, Singapore

    Book  Google Scholar 

  23. Vayenas CG, Souentie S (2011) arXiv:1106.1525v2 [physics.gen-ph]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vayenas, C.G., Souentie, S.NA. (2012). 1905–1930: The Golden Age of Physics. In: Gravity, Special Relativity, and the Strong Force. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3936-3_1

Download citation

Publish with us

Policies and ethics