Skip to main content

Adenosine Metabolism, Adenosine Kinase, and Evolution

  • Chapter
  • First Online:
Adenosine

Abstract

The enzyme adenosine kinase (AdK, ADK, or AK) plays an important role in regulating the intracellular as well as extracellular concentrations of adenosine and hence its diverse physiological actions. In view of the enormous pharmacological potential of adenosine, there has been much interest in studying adenosine kinase over the past few decades. This chapter summarizes the wealth of information that has accumulated concerning its structure and function. The aspects that are reviewed include the enzymological aspects of ADK including its reaction mechanism and ionic requirement; insights provided by the crystal structure of the enzyme; a brief overview of work on identification and development of ADK inhibitors; novel aspects of the ADK gene structure; tissue distribution and subcellular localization of the two ADK isoforms; novel information provided by mammalian cells harboring mutations of ADK; and lastly the evolutionary relationship of ADK to other related proteins. Despite enormous progress several important gaps exist in our knowledge regarding ADK, particularly concerning the cellular functions of the two isoforms and how their relative amounts in different tissues are regulated, that need to be understood in order to fully realize the therapeutic potential of increased local concentration of adenosine by modulation of this key enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al Safarjalani ON, Rais RH, Kim YA, Chu CK, Naguib FN, El Kouni MH (2008) 7-Deaza-6-benzylthioinosine analogues as subversive substrate of Toxoplasma gondii adenosine kinase: activities and selective toxicities. Biochem Pharmacol 76:958–966

    Article  CAS  PubMed  Google Scholar 

  • Amadio S, Apolloni S, D’Ambrosi N, Volonte C (2011) Purinergic signalling at the plasma membrane: a multipurpose and multidirectional mode to deal with amyotrophic lateral sclerosis and multiple sclerosis. J Neurochem 116:796–805

    Article  CAS  PubMed  Google Scholar 

  • Anderson CM, Xiong W, Young JD, Cass CE, Parkinson FE (1996) Demonstration of the existence of mRNAs encoding N1/cif and N2/cit sodium/nucleoside cotransporters in rat brain. Brain Res Mol Brain Res 42:358–361

    Article  CAS  PubMed  Google Scholar 

  • Arnfors L, Hansen T, Schonheit P, Ladenstein R, Meining W (2006) Structure of Methanocaldococcus jannaschii nucleoside kinase: an archaeal member of the ribokinase family. Acta Crystallogr D Biol Crystallogr 62:1085–1097

    Article  PubMed  CAS  Google Scholar 

  • Arnvig K, Hove-Jensen B, Switzer RL (1990) Purification and properties of phosphoribosyl-diphosphate synthetase from Bacillus subtilis. Eur J Biochem 192:195–200

    Article  CAS  PubMed  Google Scholar 

  • Baek YH, Nowak T (1982) Kinetic evidence for a dual cation role for muscle pyruvate kinase. Arch Biochem Biophys 217:491–497

    Article  CAS  PubMed  Google Scholar 

  • Bak MI, Ingwall JS (1998) Regulation of cardiac AMP-specific 5′-nucleotidase during ischemia mediates ATP resynthesis on reflow. Am J Physiol 274:C992–C1001

    CAS  PubMed  Google Scholar 

  • Baldwin SA, Beal PR, Yao SY, King AE, Cass CE, Young JD (2004) The equilibrative nucleoside transporter family, SLC29. Pflugers Arch 447:735–743

    Article  CAS  PubMed  Google Scholar 

  • Baldwin SA, Yao SY, Hyde RJ, Ng AM, Foppolo S, Barnes K, Ritzel MW, Cass CE, Young JD (2005) Functional characterization of novel human and mouse equilibrative nucleoside transporters (hENT3 and mENT3) located in intracellular membranes. J Biol Chem 280:15880–15887

    Article  CAS  PubMed  Google Scholar 

  • Ballard FJ (1970) Adenine nucleotides and the adenylate kinase equilibrium in livers of foetal and newborn rats. Biochem J 117:231–235

    CAS  PubMed  Google Scholar 

  • Barnes K, Dobrzynski H, Foppolo S, Beal PR, Ismat F, Scullion ER, Sun L, Tellez J, Ritzel MW, Claycomb WC, Cass CE, Young JD, Billeter-Clark R, Boyett MR, Baldwin SA (2006) Distribution and functional characterization of equilibrative nucleoside transporter-4, a novel cardiac adenosine transporter activated at acidic pH. Circ Res 99:510–519

    Article  CAS  PubMed  Google Scholar 

  • Bauerle JD, Grenz A, Kim JH, Lee HT, Eltzschig HK (2011) Adenosine generation and signaling during acute kidney injury. J Am Soc Nephrol 22:14–20

    Article  CAS  PubMed  Google Scholar 

  • Bennett LL Jr, Hill DL (1975) Structural requirements for activity of nucleosides as substrates for adenosine kinase: orientation of substituents on the pentofuranosyl ring. Mol Pharmacol 11:803–808

    CAS  PubMed  Google Scholar 

  • Boison D (2008a) Adenosine as a neuromodulator in neurological diseases. Curr Opin Pharmacol 8:2–7

    Article  CAS  PubMed  Google Scholar 

  • Boison D (2008b) The adenosine kinase hypothesis of epileptogenesis. Prog Neurobiol 84:249–262

    Article  CAS  PubMed  Google Scholar 

  • Boison D (2009a) Adenosine augmentation therapies (AATs) for epilepsy: prospect of cell and gene therapies. Epilepsy Res 85:131–141

    Article  CAS  PubMed  Google Scholar 

  • Boison D (2009b) Engineered adenosine-releasing cells for epilepsy therapy: human mesenchymal stem cells and human embryonic stem cells. Neurotherapeutics 6:278–283

    Article  CAS  PubMed  Google Scholar 

  • Boison D (2010) Adenosine dysfunction and adenosine kinase in epileptogenesis. Open Neurosci J 4:93–101

    CAS  PubMed  Google Scholar 

  • Boison D (2011) Modulators of nucleoside metabolism in the therapy of brain diseases. Curr Top Med Chem 11:1068–1086

    Article  CAS  PubMed  Google Scholar 

  • Boison D, Stewart KA (2009) Therapeutic epilepsy research: from pharmacological rationale to focal adenosine augmentation. Biochem Pharmacol 78:1428–1437

    Article  CAS  PubMed  Google Scholar 

  • Boison D, Scheurer L, Zumsteg V, Rulicke T, Litynski P, Fowler B, Brandner S, Mohler H (2002) Neonatal hepatic steatosis by disruption of the adenosine kinase gene. Proc Natl Acad Sci U S A 99:6985–6990

    Article  CAS  PubMed  Google Scholar 

  • Boison D, Singer P, Shen HY, Feldon J, Yee BK (2011) Adenosine hypothesis of schizophrenia—opportunities for pharmacotherapy. Neuropharmacology 62(3):1527–1543

    Article  PubMed  CAS  Google Scholar 

  • Bookser BC, Ugarkar BG, Matelich MC, Lemus RH, Allan M, Tsuchiya M, Nakane M, Nagahisa A, Wiesner JB, Erion MD (2005) Adenosine kinase inhibitors. 6. Synthesis, water solubility, and antinociceptive activity of 5-phenyl-7-(5-deoxy-beta-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidines substituted at C4 with glycinamides and related compounds. J Med Chem 48:7808–7820

    Article  CAS  PubMed  Google Scholar 

  • Bork P, Sander C, Valencia A (1993) Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases. Protein Sci 2:31–40

    Article  CAS  PubMed  Google Scholar 

  • Boss GR, Seegmiller JE (1982) Genetic defects in human purine and pyrimidine metabolism. Annu Rev Genet 16:297–328

    Article  CAS  PubMed  Google Scholar 

  • Boyer SH, Ugarkar BG, Solbach J, Kopcho J, Matelich MC, Ollis K, Gomez-Galeno JE, Mendonca R, Tsuchiya M, Nagahisa A, Nakane M, Wiesner JB, Erion MD (2005) Adenosine kinase inhibitors. 5. Synthesis, enzyme inhibition, and analgesic activity of diaryl-erythro-furanosyltubercidin analogues. J Med Chem 48:6430–6441

    Article  CAS  PubMed  Google Scholar 

  • Butini S, Gemma S, Brindisi M, Borrelli G, Lossani A, Ponte AM, Torti A, Maga G, Marinelli L, La PV, Fiorini I, Lamponi S, Campiani G, Zisterer DM, Nathwani SM, Sartini S, La MC, Da SF, Novellino E, Focher F (2011) Non-nucleoside inhibitors of human adenosine kinase: synthesis, molecular modeling, and biological studies. J Med Chem 54:1401–1420

    Article  CAS  PubMed  Google Scholar 

  • Cabrera R, Babul J, Guixe V (2010) Ribokinase family evolution and the role of conserved residues at the active site of the PfkB subfamily representative, Pfk-2 from Escherichia coli. Arch Biochem Biophys 502:23–30

    Article  CAS  PubMed  Google Scholar 

  • Caputto R (1951) The enzymatic synthesis of adenylic acid; adenosinekinase. J Biol Chem 189:801–814

    CAS  PubMed  Google Scholar 

  • Cassera MB, Ho MC, Merino EF, Burgos ES, Rinaldo-Matthis A, Almo SC, Schramm VL (2011) A high-affinity adenosine kinase from Anopheles gambiae. Biochemistry 50:1885–1893

    Article  CAS  PubMed  Google Scholar 

  • Chang CH, Cha S, Brockman RW, Bennett LL Jr (1983) Kinetic studies of adenosine kinase from L1210 cells: a model enzyme with a two-site ping-pong mechanism. Biochemistry 22:600–611

    Article  CAS  PubMed  Google Scholar 

  • Cohen MV, Downey JM (2008) Adenosine: trigger and mediator of cardioprotection. Basic Res Cardiol 103:203–215

    Article  CAS  PubMed  Google Scholar 

  • Cottam HB, Wasson DB, Shih HC, Raychaudhuri A, Di Pasquale G, Carson DA (1993) New adenosine kinase inhibitors with oral antiinflammatory activity: synthesis and biological evaluation. J Med Chem 36:3424–3430

    Article  CAS  PubMed  Google Scholar 

  • Crawford CR, Patel DH, Naeve C, Belt JA (1998) Cloning of the human equilibrative, nitrobenzylmercaptopurine riboside (NBMPR)-insensitive nucleoside transporter ei by functional expression in a transport-deficient cell line. J Biol Chem 273:5288–5293

    Article  CAS  PubMed  Google Scholar 

  • Cui XA, Singh B, Park J, Gupta RS (2009) Subcellular localization of adenosine kinase in mammalian cells: the long isoform of AdK is localized in the nucleus. Biochem Biophys Res Commun 388:46–50

    Article  CAS  PubMed  Google Scholar 

  • Cui XA, Agarwal T, Singh B, Gupta RS (2011) Molecular characterization of Chinese hamster cells mutants affected in adenosine kinase and showing novel genetic and biochemical characteristics. BMC Biochem 12:22

    Article  CAS  PubMed  Google Scholar 

  • Darvish A, Metting PJ (1993) Purification and regulation of an AMP-specific cytosolic 5′-nucleotidase from dog heart. Am J Physiol 264:H1528–H1534

    CAS  PubMed  Google Scholar 

  • Darvish A, Pomerantz RW, Zografides PG, Metting PJ (1996) Contribution of cytosolic and membrane-bound 5′-nucleotidases to cardiac adenosine production. Am J Physiol 271:H2162–H2167

    CAS  PubMed  Google Scholar 

  • Datta AK, Datta R, Sen B (2008) Antiparasitic chemotherapy: tinkering with the purine salvage pathway. Adv Exp Med Biol 625:116–132

    Article  CAS  PubMed  Google Scholar 

  • Daves GD Jr, Cheng CC (1976) The chemistry and biochemistry of C-nucleosides. Prog Med Chem 13:303–349

    Article  CAS  PubMed  Google Scholar 

  • De Jong JW (1977) Partial purification and properties of rat-heart adenosine kinase. Arch Int Physiol Biochim 85:557–569

    Article  PubMed  Google Scholar 

  • Decking UK, Schlieper G, Kroll K, Schrader J (1997) Hypoxia-induced inhibition of adenosine kinase potentiates cardiac adenosine release. Circ Res 81:154–164

    Article  CAS  PubMed  Google Scholar 

  • Dell’Angelica EC, Aguilar RC, Wolins N, Hazelwood S, Gahl WA, Bonifacino JS (2000a) Molecular characterization of the protein encoded by the Hermansky-Pudlak syndrome type 1 gene. J Biol Chem 275:1300–1306

    Article  PubMed  Google Scholar 

  • Dell’Angelica EC, Mullins C, Caplan S, Bonifacino JS (2000b) Lysosome-related organelles. FASEB J 14:1265–1278

    Article  PubMed  Google Scholar 

  • Deussen A, Borst M, Schrader J (1988) Formation of S-adenosylhomocysteine in the heart. I: An index of free intracellular adenosine. Circ Res 63:240–249

    Article  CAS  PubMed  Google Scholar 

  • Deussen A, Stappert M, Schafer S, Kelm M (1999) Quantification of extracellular and intracellular adenosine production: understanding the transmembranous concentration gradient. Circulation 99:2041–2047

    Article  CAS  PubMed  Google Scholar 

  • Drabikowska AK, Halec L, Shugar D (1985) Purification and properties of adenosine kinase from rat liver: separation from deoxyadenosine kinase activity. Z Naturforsch C 40:34–41

    CAS  PubMed  Google Scholar 

  • Dulla CG, Dobelis P, Pearson T, Frenguelli BG, Staley KJ, Masino SA (2005) Adenosine and ATP link PCO2 to cortical excitability via pH. Neuron 48:1011–1023

    Article  CAS  PubMed  Google Scholar 

  • Engel K, Zhou M, Wang J (2004) Identification and characterization of a novel monoamine transporter in the human brain. J Biol Chem 279:50042–50049

    Article  CAS  PubMed  Google Scholar 

  • Engler RL (1991) Adenosine. The signal of life? Circulation 84:951–954

    Article  CAS  PubMed  Google Scholar 

  • Fassett JT, Hu X, Xu X, Lu Z, Zhang P, Chen Y, Bache RJ (2011) Adenosine kinase regulation of cardiomyocyte hypertrophy. Am J Physiol Heart Circ Physiol 300:H1722–H1732

    Article  CAS  PubMed  Google Scholar 

  • Felipe A, Valdes R, Santo B, Lloberas J, Casado J, Pastor-Anglada M (1998) Na+-dependent nucleoside transport in liver: two different isoforms from the same gene family are expressed in liver cells. Biochem J 330(Pt 2):997–1001

    CAS  PubMed  Google Scholar 

  • Ford H Jr, Dai F, Mu L, Siddiqui MA, Nicklaus MC, Anderson L, Marquez VE, Barchi JJ Jr (2000) Adenosine deaminase prefers a distinct sugar ring conformation for binding and catalysis: kinetic and structural studies. Biochemistry 39:2581–2592

    Article  CAS  PubMed  Google Scholar 

  • Frenguelli BG, Wigmore G, Llaudet E, Dale N (2007) Temporal and mechanistic dissociation of ATP and adenosine release during ischaemia in the mammalian hippocampus. J Neurochem 101:1400–1413

    Article  CAS  PubMed  Google Scholar 

  • Gard JK, Kichura GM, Ackerman JJ, Eisenberg JD, Billadello JJ, Sobel BE, Gross RW (1985) Quantitative 31P nuclear magnetic resonance analysis of metabolite concentrations in Langendorff-perfused rabbit hearts. Biophys J 48:803–813

    Article  CAS  PubMed  Google Scholar 

  • Garvey EP, Prus KL (1999) A specific inhibitor of heart cytosolic 5′-nucleotidase I attenuates hydrolysis of adenosine 5′-monophosphate in primary rat myocytes. Arch Biochem Biophys 364:235–240

    Article  CAS  PubMed  Google Scholar 

  • Gorman MW, He MX, Hall CS, Sparks HV (1997) Inorganic phosphate as regulator of adenosine formation in isolated guinea pig hearts. Am J Physiol 272:H913–H920

    CAS  PubMed  Google Scholar 

  • Gray JH, Owen RP, Giacomini KM (2004) The concentrative nucleoside transporter family, SLC28. Pflugers Arch 447:728–734

    Article  CAS  PubMed  Google Scholar 

  • Griffith DA, Jarvis SM (1996) Nucleoside and nucleobase transport systems of mammalian cells. Biochim Biophys Acta 1286:153–181

    Article  CAS  PubMed  Google Scholar 

  • Griffiths M, Yao SY, Abidi F, Phillips SE, Cass CE, Young JD, Baldwin SA (1997) Molecular cloning and characterization of a nitrobenzylthioinosine-insensitive (ei) equilibrative nucleoside transporter from human placenta. Biochem J 328(Pt 3):739–743

    CAS  PubMed  Google Scholar 

  • Guillen-Gomez E, Calbet M, Casado J, de LL, Soriano E, Pastor-Anglada M, Burgaya F (2004) Distribution of CNT2 and ENT1 transcripts in rat brain: selective decrease of CNT2 mRNA in the cerebral cortex of sleep-deprived rats. J Neurochem 90:883–893

    Article  CAS  PubMed  Google Scholar 

  • Gupta RS (1989) Purine nucleoside analogs. In: Gupta RS (ed) Drug resistance in mammalian cells. CRC, Florida, pp 89–110

    Google Scholar 

  • Gupta RS (1996) Adenosine-AMP exchange activity is an integral part of the mammalian adenosine kinase. Biochem Mol Biol Int 39:493–502

    CAS  PubMed  Google Scholar 

  • Gupta RS, Mehta KD (1986) Genetic and biochemical characteristics of three different types of mutants of mammalian cells affected in adenosine kinase. Adv Exp Med Biol 195(Pt B):595–603

    PubMed  Google Scholar 

  • Gupta RS, Siminovitch L (1978) Genetic and biochemical studies with the adenosine analogs toyocamycin and tubercidin: mutation at the adenosine kinase locus in Chinese hamster cells. Somatic Cell Genet 4:715–735

    Article  CAS  PubMed  Google Scholar 

  • Gupta RS, Singh B (1983) Quantitative mutagenesis at the adenosine kinase locus in Chinese hamster ovary cells. Development and characteristics of the selection system. Mutat Res 113:441–454

    Article  CAS  PubMed  Google Scholar 

  • Gustafson LA, Kroll K (1998) Downregulation of 5′-nucleotidase in rabbit heart during coronary underperfusion. Am J Physiol 274:H529–H538

    CAS  PubMed  Google Scholar 

  • Hao W, Gupta RS (1996) Pentavalent ions dependency of mammalian adenosine kinase. Biochem Mol Biol Int 38:889–899

    CAS  PubMed  Google Scholar 

  • Headrick JP, Willis RJ (1990) Adenosine formation and energy metabolism: a 31P-NMR study in isolated rat heart. Am J Physiol 258:H617–H624

    CAS  PubMed  Google Scholar 

  • Henderson JF, Mikoshiba A, Chu SY, Caldwell IC (1972) Kinetic studies of adenosine kinase from Ehrlich ascites tumor cells. J Biol Chem 247:1972–1975

    CAS  PubMed  Google Scholar 

  • Hofer HW, Allen BL, Kaeini MR, Pette D, Harris BG (1982) Phosphofructokinase from Ascaris suum. Regulatory kinetic studies and activity near physiological conditions. J Biol Chem 257:3801–3806

    CAS  PubMed  Google Scholar 

  • Hugouvieux-Cotte-Pattat N, Nasser W, Robert-Baudouy J (1994) Molecular characterization of the Erwinia chrysanthemi kdgK gene involved in pectin degradation. J Bacteriol 176:2386–2392

    CAS  PubMed  Google Scholar 

  • Hyde RJ, Cass CE, Young JD, Baldwin SA (2001) The ENT family of eukaryote nucleoside and nucleobase transporters: recent advances in the investigation of structure/function relationships and the identification of novel isoforms. Mol Membr Biol 18:53–63

    Article  CAS  PubMed  Google Scholar 

  • Jarvis MF, Yu H, Kohlhaas K, Alexander K, Lee CH, Jiang M, Bhagwat SS, Williams M, Kowaluk EA (2000) ABT-702 (4-amino-5-(3-bromophenyl)-7-(6-morpholinopyridin-3-yl)pyrido[2, 3-d]pyrimidine), a novel orally effective adenosine kinase inhibitor with analgesic and anti-inflammatory properties: I. In vitro characterization and acute antinociceptive effects in the mouse. J Pharmacol Exp Ther 295:1156–1164

    CAS  PubMed  Google Scholar 

  • Jiang N, Kowaluk EA, Lee CH, Mazdiyasni H, Chopp M (1997) Adenosine kinase inhibition protects brain against transient focal ischemia in rats. Eur J Pharmacol 320:131–137

    Article  CAS  PubMed  Google Scholar 

  • Jue K, Bestor TH, Trasler JM (1995) Regulated synthesis and localization of DNA methyltransferase during spermatogenesis. Biol Reprod 53:561–569

    Article  CAS  PubMed  Google Scholar 

  • Juranka P, Chan VL (1985) Analysis of adenosine kinase mutants of baby hamster kidney cells using affinity-purified antibody. J Biol Chem 260:7738–7743

    CAS  PubMed  Google Scholar 

  • Kloor D, Hermes M, Fink K, Schmid H, Klingel K, Mack A, Grenz A, Osswald H (2007) Expression and localization of S-adenosylhomocysteine-hydrolase in the rat kidney following carbon monoxide induced hypoxia. Cell Physiol Biochem 19:57–66

    Article  CAS  PubMed  Google Scholar 

  • Kowaluk EA, Jarvis MF (2000) Therapeutic potential of adenosine kinase inhibitors. Expert Opin Investig Drugs 9:551–564

    Article  CAS  PubMed  Google Scholar 

  • Kowaluk EA, Kohlhaas KL, Bannon A, Gunther K, Lynch JJ III, Jarvis MF (1999) Characterization of the effects of adenosine kinase inhibitors on acute thermal nociception in mice. Pharmacol Biochem Behav 63:83–91

    Article  CAS  PubMed  Google Scholar 

  • Kowaluk EA, Mikusa J, Wismer CT, Zhu CZ, Schweitzer E, Lynch JJ, Lee CH, Jiang M, Bhagwat SS, Gomtsyan A, McKie J, Cox BF, Polakowski J, Reinhart G, Williams M, Jarvis MF (2000) ABT-702 (4-amino-5-(3-bromophenyl)-7-(6-morpholino-pyridin- 3-yl)pyrido[2,3-d]pyrimidine), a novel orally effective adenosine kinase inhibitor with analgesic and anti-inflammatory properties. II. In vivo characterization in the rat. J Pharmacol Exp Ther 295:1165–1174

    CAS  PubMed  Google Scholar 

  • Kredich NM, Martin DV Jr (1977) Role of S-adenosylhomocysteine in adenosinemediated toxicity in cultured mouse T lymphoma cells. Cell 12:931–938

    Article  CAS  PubMed  Google Scholar 

  • Krenitsky TA, Miller RL, Fyfe JA (1974) Levels of nucleoside and nucleotide kinases in rhesus monkey tissues. Biochem Pharmacol 23:70–72

    Article  CAS  PubMed  Google Scholar 

  • Kroll K, Deussen A, Sweet IR (1992) Comprehensive model of transport and metabolism of adenosine and S-adenosylhomocysteine in the guinea pig heart. Circ Res 71:590–604

    Article  CAS  PubMed  Google Scholar 

  • Laloux M, Van Schaftingen E, Francois J, Hers HG (1985) Phosphate dependency of phosphofructokinase 2. Eur J Biochem 148:155–159

    Article  CAS  PubMed  Google Scholar 

  • Larrayoz IM, Casado FJ, Pastor-Anglada M, Lostao MP (2004) Electrophysiological characterization of the human Na(+)/nucleoside cotransporter 1 (hCNT1) and role of adenosine on hCNT1 function. J Biol Chem 279:8999–9007

    Article  CAS  PubMed  Google Scholar 

  • Latini S, Bordoni F, Pedata F, Corradetti R (1999) Extracellular adenosine concentrations during in vitro ischaemia in rat hippocampal slices. Br J Pharmacol 127:729–739

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Hebda CA, Nowak T (1981) The role of cations in avian liver phosphoenolpyruvate carboxykinase catalysis. Activation and regulation. J Biol Chem 256:12793–12801

    CAS  PubMed  Google Scholar 

  • Lee CH, Jiang M, Cowart M, Gfesser G, Perner R, Kim KH, Gu YG, Williams M, Jarvis MF, Kowaluk EA, Stewart AO, Bhagwat SS (2001) Discovery of 4-amino-5-(3-bromophenyl)-7-(6-morpholino-pyridin-3-yl)pyrido[2,3-d]pyrimi dine, an orally active, non-nucleoside adenosine kinase inhibitor. J Med Chem 44:2133–2138

    Article  CAS  PubMed  Google Scholar 

  • Li T, Ren G, Lusardi T, Wilz A, Lan JQ, Iwasato T, Itohara S, Simon RP, Boison D (2008) Adenosine kinase is a target for the prediction and prevention of epileptogenesis in mice. J Clin Invest 118:571–582

    Article  CAS  PubMed  Google Scholar 

  • Lindberg B, Klenow H, Hansen K (1967) Some properties of partially purified mammalian adenosine kinase. J Biol Chem 242:350–356

    CAS  PubMed  Google Scholar 

  • Loncar R, Flesche CW, Deussen A (1997) Determinants of the S-adenosylhomocysteine (SAH) technique for the local assessment of cardiac free cytosolic adenosine. J Mol Cell Cardiol 29:1289–1305

    Article  CAS  PubMed  Google Scholar 

  • Long MC, Escuyer V, Parker WB (2003) Identification and characterization of a unique adenosine kinase from Mycobacterium tuberculosis. J Bacteriol 185:6548–6555

    Article  CAS  PubMed  Google Scholar 

  • Luscher A, Onal P, Schweingruber AM, Maser P (2007) Adenosine kinase of Trypanosoma brucei and its role in susceptibility to adenosine antimetabolites. Antimicrob Agents Chemother 51:3895–3901

    Article  CAS  PubMed  Google Scholar 

  • Maj MC, Gupta RS (2001) The effect of inorganic phosphate on the activity of bacterial ribokinase. J Protein Chem 20:139–144

    Article  CAS  PubMed  Google Scholar 

  • Maj M, Singh B, Gupta RS (2000) The influence of inorganic phosphate on the activity of adenosine kinase. Biochim Biophys Acta 1476:33–42

    Article  CAS  PubMed  Google Scholar 

  • Maj MC, Singh B, Gupta RS (2002) Pentavalent ions dependency is a conserved property of adenosine kinase from diverse sources: identification of a novel motif implicated in phosphate and magnesium ion binding and substrate inhibition. Biochemistry 41:4059–4069

    Article  CAS  PubMed  Google Scholar 

  • Malhotra J, Gupta YK (1997) Effect of adenosine receptor modulation on pentylenetetrazole-induced seizures in rats. Br J Pharmacol 120:282–288

    Article  CAS  PubMed  Google Scholar 

  • Manthei SA, Reiling CM, Van Wylen DG (1998) Dual cardiac microdialysis to assess drug-induced changes in interstitial purine metabolites: adenosine deaminase inhibition versus adenosine kinase inhibition. Cardiovasc Res 37:171–178

    Article  CAS  PubMed  Google Scholar 

  • Mathews II, Erion MD, Ealick SE (1998) Structure of human adenosine kinase at 1.5 A resolution. Biochemistry 37:15607–15620

    Article  CAS  PubMed  Google Scholar 

  • Matulenko MA, Paight ES, Frey RR, Gomtsyan A, DiDomenico S Jr, Jiang M, Lee CH, Stewart AO, Yu H, Kohlhaas KL, Alexander KM, McGaraughty S, Mikusa J, Marsh KC, Muchmore SW, Jakob CL, Kowaluk EA, Jarvis MF, Bhagwat SS (2007) 4-amino-5-aryl-6-arylethynylpyrimidines: structure-activity relationships of non-nucleoside adenosine kinase inhibitors. Bioorg Med Chem 15:1586–1605

    Article  CAS  PubMed  Google Scholar 

  • McAdoo DJ, Robak G, Xu GY, Hughes MG (2000) Adenosine release upon spinal cord injury. Brain Res 854:152–157

    Article  CAS  PubMed  Google Scholar 

  • McGaraughty S, Jarvis MF (2006) Purinergic control of neuropathic pain. Drug Dev Res 95:376–388

    Article  CAS  Google Scholar 

  • McNally T, Helfrich RJ, Cowart M, Dorwin SA, Meuth JL, Idler KB, Klute KA, Simmer RL, Kowaluk EA, Halbert DN (1997) Cloning and expression of the adenosine kinase gene from rat and human tissues. Biochem Biophys Res Commun 231:645–650

    Article  CAS  PubMed  Google Scholar 

  • Mehta KD, Gupta RS (1983) Formycin B-resistant mutants of Chinese hamster ovary cells: novel genetic and biochemical phenotype affecting adenosine kinase. Mol Cell Biol 3:1468–1477

    CAS  PubMed  Google Scholar 

  • Mehta KD, Gupta RS (1985) Chinese hamster ovary cell mutants specifically affected in the phosphorylation of C-purine nucleosides. Can J Biochem Cell Biol 63:1044–1048

    Article  CAS  PubMed  Google Scholar 

  • Mildvan AS (1987) Role of magnesium and other divalent cations in ATP-utilizing enzymes. Magnesium 6:28–33

    CAS  PubMed  Google Scholar 

  • Miller RL, Adamczyk DL, Miller WH, Koszalka GW, Rideout JL, Beacham LM III, Chao EY, Haggerty JJ, Krenitsky TA, Elion GB (1979) Adenosine kinase from rabbit liver. II. Substrate and inhibitor specificity. J Biol Chem 254:2346–2352

    CAS  PubMed  Google Scholar 

  • Miller RL, Adamczyk DL, Rideout JL, Krenitsky TA (1982) Purification, characterization, substrate and inhibitor specificity of adenosine kinase from several Eimeria species. Mol Biochem Parasitol 6:209–223

    Article  CAS  PubMed  Google Scholar 

  • Miller LP, Jelovich LA, Yao L, DaRe J, Ugarkar B, Foster AC (1996) Pre- and peristroke treatment with the adenosine kinase inhibitor, 5′-deoxyiodotubercidin, significantly reduces infarct volume after temporary occlusion of the middle cerebral artery in rats. Neurosci Lett 220:73–76

    Article  CAS  PubMed  Google Scholar 

  • Mimouni M, Bontemps F, Van den BG (1994a) Kinetic studies of rat liver adenosine kinase. Explanation of exchange reaction between adenosine and AMP. J Biol Chem 269:17820–17825

    CAS  PubMed  Google Scholar 

  • Mimouni M, Bontemps F, Van den BG (1994b) Production of adenosine and nucleoside analogues by an exchange reaction catalyzed by adenosine kinase. Adv Exp Med Biol 370:613–616

    CAS  PubMed  Google Scholar 

  • Minuesa G, Purcet S, Erkizia I, Molina-Arcas M, Bofill M, Izquierdo-Useros N, Casado FJ, Clotet B, Pastor-Anglada M, Martinez-Picado J (2008) Expression and functionality of anti-human immunodeficiency virus and anticancer drug uptake transporters in immune cells. J Pharmacol Exp Ther 324:558–567

    Article  CAS  PubMed  Google Scholar 

  • Misumi Y, Ogata S, Ohkubo K, Hirose S, Ikehara Y (1990) Primary structure of human placental 5′-nucleotidase and identification of the glycolipid anchor in the mature form. Eur J Biochem 191:563–569

    Article  CAS  PubMed  Google Scholar 

  • Moffatt BA, Weretilnyk EA (2001) Sustaining S-adenosyl-L-methionine-dependent methyltransferase activity in plant cells. Physiol Plant 113:435–442

    Article  CAS  Google Scholar 

  • Moffatt BA, Stevens YY, Allen MS, Snider JD, Pereira LA, Todorova MI, Summers PS, Weretilnyk EA, Martin-McCaffrey L, Wagner C (2002) Adenosine kinase deficiency is associated with developmental abnormalities and reduced transmethylation. Plant Physiol 128:812–821

    Article  CAS  PubMed  Google Scholar 

  • Molina-Arcas M, Casado FJ, Pastor-Anglada M (2009) Nucleoside transporter proteins. Curr Vasc Pharmacol 7:426–434

    Article  CAS  PubMed  Google Scholar 

  • Moser GH, Schrader J, Deussen A (1989) Turnover of adenosine in plasma of human and dog blood. Am J Physiol 256:C799–C806

    CAS  PubMed  Google Scholar 

  • Mubagwa K, Flameng W (2001) Adenosine, adenosine receptors and myocardial protection: an updated overview. Cardiovasc Res 52:25–39

    Article  CAS  PubMed  Google Scholar 

  • Muchmore SW, Smith RA, Stewart AO, Cowart MD, Gomtsyan A, Matulenko MA, Yu H, Severin JM, Bhagwat SS, Lee CH, Kowaluk EA, Jarvis MF, Jakob CL (2006) Crystal structures of human adenosine kinase inhibitor complexes reveal two distinct binding modes. J Med Chem 49:6726–6731

    Article  CAS  PubMed  Google Scholar 

  • Mullane K, Bullough D (1995) Harnessing an endogenous cardioprotective mechanism: cellular sources and sites of action of adenosine. J Mol Cell Cardiol 27:1041–1054

    Article  CAS  PubMed  Google Scholar 

  • Naito Y, Lowenstein JM (1985) 5′-Nucleotidase from rat heart membranes. Inhibition by adenine nucleotides and related compounds. Biochem J 226:645–651

    CAS  PubMed  Google Scholar 

  • Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–36

    Article  CAS  PubMed  Google Scholar 

  • Osses N, Pearson JD, Yudilevich DL, Jarvis SM (1996) Hypoxanthine enters human vascular endothelial cells (ECV 304) via the nitrobenzylthioinosine-insensitive equilibrative nucleoside transporter. Biochem J 317(Pt 3):843–848

    CAS  PubMed  Google Scholar 

  • Pak MA, Haas HL, Decking UK, Schrader J (1994) Inhibition of adenosine kinase increases endogenous adenosine and depresses neuronal activity in hippocampal slices. Neuropharmacology 33:1049–1053

    Article  CAS  PubMed  Google Scholar 

  • Palella TD, Andres CM, Fox IH (1980) Human placental adenosine kinase. Kinetic mechanism and inhibition. J Biol Chem 255:5264–5269

    CAS  PubMed  Google Scholar 

  • Parducci RE, Cabrera R, Baez M, Guixe V (2006) Evidence for a catalytic Mg2+ ion and effect of phosphate on the activity of Escherichia coli phosphofructokinase-2: regulatory properties of a ribokinase family member. Biochemistry 45:9291–9299

    Article  CAS  PubMed  Google Scholar 

  • Park J, Gupta RS (2008) Adenosine kinase and ribokinase—the RK family of proteins. Cell Mol Life Sci 65:2875–2896

    Article  CAS  PubMed  Google Scholar 

  • Park J, Singh B, Maj MC, Gupta RS (2004) Phosphorylated derivatives that activate or inhibit mammalian adenosine kinase provide insights into the role of pentavalent ions in AK catalysis. Protein J 23:167–177

    Article  CAS  PubMed  Google Scholar 

  • Park J, Singh B, Gupta RS (2006) Inhibition of adenosine kinase by phosphonate and bisphosphonate derivatives. Mol Cell Biochem 283:11–21

    Article  CAS  PubMed  Google Scholar 

  • Park J, Vaidyanathan G, Singh B, Gupta RS (2007) Identification and biochemical studies on novel non-nucleoside inhibitors of the enzyme adenosine kinase. Protein J 26:203–212

    Article  CAS  PubMed  Google Scholar 

  • Park J, Singh B, Gupta RS (2009) Mycobacterial adenosine kinase is not a typical adenosine kinase. FEBS Lett 583:2231–2236

    Article  CAS  PubMed  Google Scholar 

  • Parker WB, Secrist JA III, Waud WR (2004) Purine nucleoside antimetabolites in development for the treatment of cancer. Curr Opin Investig Drugs 5:592–596

    CAS  PubMed  Google Scholar 

  • Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116

    Article  CAS  PubMed  Google Scholar 

  • Pelicano H, Maury G, Elalaoui A, Shafiee M, Imbach JL, Goody RS, Divita G (1997) Study of the substrate-binding properties of bovine liver adenosine kinase and inhibition by fluorescent nucleoside analogues. Eur J Biochem 248:930–937

    Article  CAS  PubMed  Google Scholar 

  • Pennycooke M, Chaudary N, Shuralyova I, Zhang Y, Coe IR (2001) Differential expression of human nucleoside transporters in normal and tumor tissue. Biochem Biophys Res Commun 280:951–959

    Article  CAS  PubMed  Google Scholar 

  • Pereira LA, Schoor S, Goubet F, Dupree P, Moffatt BA (2006) Deficiency of adenosine kinase activity affects the degree of pectin methyl-esterification in cell walls of Arabidopsis thaliana. Planta 224:1401–1414

    Article  CAS  PubMed  Google Scholar 

  • Phillis JW, Goshgarian HG (2001) Adenosine and neurotrauma: therapeutic perspectives. Neurol Res 23:183–189

    Article  CAS  PubMed  Google Scholar 

  • Pignataro G, Simon RP, Boison D (2007) Transgenic overexpression of adenosine kinase aggravates cell death in ischemia. J Cereb Blood Flow Metab 27:1–5

    Article  CAS  PubMed  Google Scholar 

  • Pignataro G, Maysami S, Studer FE, Wilz A, Simon RP, Boison D (2008) Downregulation of hippocampal adenosine kinase after focal ischemia as potential endogenous neuroprotective mechanism. J Cereb Blood Flow Metab 28:17–23

    Article  CAS  PubMed  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    CAS  PubMed  Google Scholar 

  • Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447:425–432

    Article  CAS  PubMed  Google Scholar 

  • Ritzel MW, Yao SY, Ng AM, Mackey JR, Cass CE, Young JD (1998) Molecular cloning, functional expression and chromosomal localization of a cDNA encoding a human Na+/nucleoside cotransporter (hCNT2) selective for purine nucleosides and uridine. Mol Membr Biol 15:203–211

    Article  CAS  PubMed  Google Scholar 

  • Ritzel MW, Ng AM, Yao SY, Graham K, Loewen SK, Smith KM, Ritzel RG, Mowles DA, Carpenter P, Chen XZ, Karpinski E, Hyde RJ, Baldwin SA, Cass CE, Young JD (2001) Molecular identification and characterization of novel human and mouse concentrative Na+-nucleoside cotransporter proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (system cib). J Biol Chem 276:2914–2927

    Article  CAS  PubMed  Google Scholar 

  • Rivas-Pardo JA, Caniuguir A, Wilson CA, Babul J, Guixe V (2011) Divalent metal cation requirements of phosphofructokinase-2 from E. coli. Evidence for a high affinity binding site for Mn2+. Arch Biochem Biophys 505:60–66

    Article  CAS  PubMed  Google Scholar 

  • Rotllan P, Miras Portugal MT (1985) Adenosine kinase from bovine adrenal medulla. Eur J Biochem 151:365–371

    Article  CAS  PubMed  Google Scholar 

  • Sahin B, Kansy JW, Nairn AC, Spychala J, Ealick SE, Fienberg AA, Greene RW, Bibb JA (2004) Molecular characterization of recombinant mouse adenosine kinase and evaluation as a target for protein phosphorylation. Eur J Biochem 271:3547–3555

    Article  CAS  PubMed  Google Scholar 

  • Sakowicz M, Grden M, Pawelczyk T (2001) Expression level of adenosine kinase in rat tissues. Lack of phosphate effect on the enzyme activity. Acta Biochim Pol 48:745–754

    CAS  PubMed  Google Scholar 

  • Sala-Newby GB, Skladanowski AC, Newby AC (1999) The mechanism of adenosine formation in cells. Cloning of cytosolic 5′-nucleotidase-I. J Biol Chem 274:17789–17793

    Article  CAS  PubMed  Google Scholar 

  • Schumacher MA, Scott DM, Mathews II, Ealick SE, Roos DS, Ullman B, Brennan RG (2000) Crystal structures of Toxoplasma gondii adenosine kinase reveal a novel catalytic mechanism and prodrug binding. J Mol Biol 296:549–567

    Article  CAS  PubMed  Google Scholar 

  • Shen HY, Li T, Boison D (2010) A novel mouse model for sudden unexpected death in epilepsy (SUDEP): role of impaired adenosine clearance. Epilepsia 51:465–468

    Article  CAS  PubMed  Google Scholar 

  • Sigrell JA, Cameron AD, Jones TA, Mowbray SL (1998) Structure of Escherichia coli ribokinase in complex with ribose and dinucleotide determined to 1.8 A resolution: insights into a new family of kinase structures. Structure 6:183–193

    Article  CAS  PubMed  Google Scholar 

  • Sigrell JA, Cameron AD, Mowbray SL (1999) Induced fit on sugar binding activates ribokinase. J Mol Biol 290:1009–1018

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Gupta RS (2004) Genomic organization and linkage via a bidirectional promoter of the AP-3 (adaptor protein-3) mu3A and AK (adenosine kinase) genes: deletion mutants of AK in Chinese hamster cells extend into the AP-3 mu3A gene. Biochem J 378:519–528

    Article  CAS  PubMed  Google Scholar 

  • Singh LS, Sharma R (2000) Purification and characterization of intestinal adenosine deaminase from mice. Mol Cell Biochem 204:127–134

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Hao W, Wu Z, Eigl B, Gupta RS (1996) Cloning and characterization of cDNA for adenosine kinase from mammalian (Chinese hamster, mouse, human and rat) species. High frequency mutants of Chinese hamster ovary cells involve structural alterations in the gene. Eur J Biochem 241:564–571

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Lin A, Wu ZC, Gupta RS (2001) Gene structure for adenosine kinase in Chinese hamster and human: high-frequency mutants of CHO cells involve deletions of several introns and exons. DNA Cell Biol 20:53–65

    Article  CAS  PubMed  Google Scholar 

  • Smith KM, Ng AM, Yao SY, Labedz KA, Knaus EE, Wiebe LI, Cass CE, Baldwin SA, Chen XZ, Karpinski E, Young JD (2004) Electrophysiological characterization of a recombinant human Na+-coupled nucleoside transporter (hCNT1) produced in Xenopus oocytes. J Physiol 558:807–823

    Article  CAS  PubMed  Google Scholar 

  • Smith KM, Slugoski MD, Loewen SK, Ng AM, Yao SY, Chen XZ, Karpinski E, Cass CE, Baldwin SA, Young JD (2005) The broadly selective human Na+/nucleoside cotransporter (hCNT3) exhibits novel cation-coupled nucleoside transport characteristics. J Biol Chem 280:25436–25449

    Article  CAS  PubMed  Google Scholar 

  • Snyder FF, Lukey T (1982) Kinetic considerations for the regulation of adenosine and deoxyadenosine metabolism in mouse and human tissues based on a thymocyte model. Biochim Biophys Acta 696:299–307

    Article  CAS  PubMed  Google Scholar 

  • Soler C, Garcia-Manteiga J, Valdes R, Xaus J, Comalada M, Casado FJ, Pastor-Anglada M, Celada A, Felipe A (2001) Macrophages require different nucleoside transport systems for proliferation and activation. FASEB J 15:1979–1988

    Article  CAS  PubMed  Google Scholar 

  • Spychala J, Datta NS, Takabayashi K, Datta M, Fox IH, Gribbin T, Mitchell BS (1996) Cloning of human adenosine kinase cDNA: sequence similarity to microbial ribokinases and fructokinases. Proc Natl Acad Sci U S A 93:1232–1237

    Article  CAS  PubMed  Google Scholar 

  • Stone TW, Ceruti S, Abbracchio MP (2009) Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb Exp Pharmacol 193:535–587

    Article  CAS  PubMed  Google Scholar 

  • Sullivan JM, Alpers JB (1971) In vitro regulation of rat heart 5′-nucleotidase by adenine nucleotides and magnesium. J Biol Chem 246:3057–3063

    CAS  PubMed  Google Scholar 

  • Switzer RL (1969) Regulation and mechanism of phosphoribosylpyrophosphate synthetase. I. Purification and properties of the enzyme from Salmonella typhimurium. J Biol Chem 244:2854–2863

    CAS  PubMed  Google Scholar 

  • Tennyson CN, Klamut HJ, Worton RG (1995) The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat Genet 9:184–190

    Article  CAS  PubMed  Google Scholar 

  • Theofilas P, Brar S, Stewart KA, Shen HY, Sandau US, Poulsen D, Boison D (2011) Adenosine kinase as a target for therapeutic antisense strategies in epilepsy. Epilepsia 52:589–601

    Article  PubMed  Google Scholar 

  • Ugarkar BG, DaRe JM, Kopcho JJ, Browne CE III, Schanzer JM, Wiesner JB, Erion MD (2000) Adenosine kinase inhibitors. 1. Synthesis, enzyme inhibition, and antiseizure activity of 5-iodotubercidin analogues. J Med Chem 43:2883–2893

    Article  CAS  PubMed  Google Scholar 

  • Ugarkar BG, Castellino AJ, DaRe JS, Ramirez-Weinhouse M, Kopcho JJ, Rosengren S, Erion MD (2003) Adenosine kinase inhibitors. 3. Synthesis, SAR, and antiinflammatory activity of a series of l-lyxofuranosyl nucleosides. J Med Chem 46:4750–4760

    Article  CAS  PubMed  Google Scholar 

  • Valdes R, Ortega MA, Casado FJ, Felipe A, Gil A, Sanchez-Pozo A, Pastor-Anglada M (2000) Nutritional regulation of nucleoside transporter expression in rat small intestine. Gastroenterology 119:1623–1630

    Article  CAS  PubMed  Google Scholar 

  • Wiesner JB, Ugarkar BG, Castellino AJ, Barankiewicz J, Dumas DP, Gruber HE, Foster AC, Erion MD (1999) Adenosine kinase inhibitors as a novel approach to anticonvulsant therapy. J Pharmacol Exp Ther 289:1669–1677

    CAS  PubMed  Google Scholar 

  • Williams M (1996) Challenges in developing P2 purinoceptor-based therapeutics. Ciba Found Symp 198:309–321

    CAS  PubMed  Google Scholar 

  • Williams M, Jarvis MF (2000) Purinergic and pyrimidinergic receptors as potential drug targets. Biochem Pharmacol 59:1173–1185

    Article  CAS  PubMed  Google Scholar 

  • Williams-Karnesky RL, Stenzel-Poore MP (2009) Adenosine and stroke: maximizing the therapeutic potential of adenosine as a prophylactic and acute neuroprotectant. Curr Neuropharmacol 7:217–227

    Article  CAS  PubMed  Google Scholar 

  • Wojcik M, Zieleniak A, Wozniak LA (2010) New insight into A1 adenosine receptors in diabetes treatment. Curr Pharm Des 16:4237–4242

    Article  CAS  PubMed  Google Scholar 

  • Wu LF, Reizer A, Reizer J, Cai B, Tomich JM, Saier MH Jr (1991) Nucleotide sequence of the Rhodobacter capsulatus fruK gene, which encodes fructose-1-phosphate kinase: evidence for a kinase superfamily including both phosphofructokinases of Escherichia coli. J Bacteriol 173:3117–3127

    CAS  PubMed  Google Scholar 

  • Yamazaki Y, Truong VL, Lowenstein JM (1991) 5′-Nucleotidase I from rabbit heart. Biochemistry 30:1503–1509

    Article  CAS  PubMed  Google Scholar 

  • Yao SY, Ng AM, Vickers MF, Sundaram M, Cass CE, Baldwin SA, Young JD (2002) Functional and molecular characterization of nucleobase transport by recombinant human and rat equilibrative nucleoside transporters 1 and 2. Chimeric constructs reveal a role for the ENT2 helix 5-6 region in nucleobase translocation. J Biol Chem 277:24938–24948

    Article  CAS  PubMed  Google Scholar 

  • Zheng GZ, Mao Y, Lee CH, Pratt JK, Koenig JR, Perner RJ, Cowart MD, Gfesser GA, McGaraughty S, Chu KL, Zhu C, Yu H, Kohlhaas K, Alexander KM, Wismer CT, Mikusa J, Jarvis MF, Kowaluk EA, Stewart AO (2003) Adenosine kinase inhibitors: polar 7-substitutent of pyridopyrimidine derivatives improving their locomotor selectivity. Bioorg Med Chem Lett 13:3041–3044

    Article  CAS  PubMed  Google Scholar 

  • Zylka MJ (2011) Pain-relieving prospects for adenosine receptors and ectonucleotidases. Trends Mol Med 17:188–196

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant from the Heart and Stroke Foundation of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhey S. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Park, J., Gupta, R.S. (2013). Adenosine Metabolism, Adenosine Kinase, and Evolution. In: Masino, S., Boison, D. (eds) Adenosine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3903-5_2

Download citation

Publish with us

Policies and ethics