Skip to main content

Therapeutic Perspectives of Adenosine Receptor Compounds in Functional Restitution After Spinal Cord Injury

  • Chapter
  • First Online:
Adenosine

Abstract

Adenosine is a nucleoside that occurs naturally in mammalian tissues. It is a neuromodulator that is involved in a variety of physiological processes. It is generally accepted that the effects of adenosine are mediated through four G-protein-coupled receptors classified as A1, A2A, A2B, and A3 Rs. There is evidence that following traumatic injury in the brain and/or spinal cord excessive amounts of adenosine are released, and that this neuromodulator is involved in inflammatory processes and subsequent secondary effects of the injury. There is also evidence that excessive release of adenosine contributes to progressive neuronal injury and eventual loss of function. In several experimental animal models of spinal cord injury (SCI) pharmacologic manipulation of adenosine receptors following trauma can be beneficial in restoration of function.

The purpose of this review is to summarize the roles of adenosine receptors in two rodent models of SCI. In the first model, an upper cervical spinal cord hemisection paralyzes the hemidiaphragm ipsilateral to the injury; a latent respiratory motor pathway can be activated to restore respiratory function after injury. In the model, restoration of respiratory activity following systemic administration of theophylline, a nonspecific adenosine receptor antagonist, can be demonstrated. In the second model, involving thoracic contusion (T5–T8), neuro-protective effects can be induced by activation of specific adenosine receptor subtypes. Finally, potential therapeutic perspectives of adenosine compounds in SCI are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bae H, Nantwi KD, Goshgarian HG (2005) Recovery of respiratory function following C2 hemi and carotid body denervation in adult rats: influence of peripheral adenosine receptors. Exp Neurol 191:94–103

    Article  CAS  PubMed  Google Scholar 

  • Bascom AT, Lattin CD, Aboussouan LS, Goshgarian HG (2005) Effect of acute aminophylline administration on diaphragm function in high cervical tetraplegia: a case report. Chest 127(2):658–661

    Article  PubMed  Google Scholar 

  • Basura GJ, Nantwi KD, Goshgarian HG (2002) Theophylline-induced respiratory recovery following cervical spinal cord hemisection is augmented by serotonin 2 receptor stimulation. Brain Res 956:1–13

    Article  CAS  PubMed  Google Scholar 

  • Bergstrand H (1980) Phosphodiesterase inhibition and theophylline. Eur J Respir Dis 61(109):37–44

    Google Scholar 

  • Bona E, Aden U, Fredholm BB, Hagberg H (1995) The effect of long term caffeine treatment on hypoxic-ischemic brain damage in the neonate. Pediatr Res 38(2):312–318

    Article  CAS  PubMed  Google Scholar 

  • Carley DW, Radulovacki M (1999) Role of peripheral adenosine A1 receptors in regulation of sleep apneas in rats. Exp Neurol 159:545–550

    Article  CAS  PubMed  Google Scholar 

  • Cassada DC, Tribble GC, Young JS, Gangemi JJ, Gohari AR, Butler PD, Rieger JM, Kron IL, Linden J, Kern JA (2002) Adenosine A2A analogue improves neurologic outcome after spinal cord trauma in rabbits. J Trauma 53(2):225–229

    Article  CAS  PubMed  Google Scholar 

  • Chevrolet J-C, Reverdin A, Suter PM, Tschopp JM, Junod A (1983) Ventilatory dysfunction resulting from bilateral anterolateral high cervical cordotomy. Chest 84(1):112–115

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Liao W-L, Newton KM, Onario RC, Knig AM, Desilets FC, Woodward EJ, Eichler ME, Frontera WR, Sabharwal S, Teng YD (2005) Respiratory abnormalities resulting from midcervical spinal cord injury and their reversal by serotonin 1A agonists in conscious rats. J Neurosci 25(18):4550–4559

    Article  CAS  PubMed  Google Scholar 

  • Chou TD, Khan S, Forde J, Hirsh KR (1985) Caffiene tolerance: electrophysiological and neurochemical evidence. Life Sci 36:2347–2358

    Article  CAS  PubMed  Google Scholar 

  • Chu N-S (1981) Caffeine- and aminophylline-induced seizures. Epilepsia 22:85–94

    Article  CAS  PubMed  Google Scholar 

  • Dong X-W, Feldman JL (1995) Modulation of inspiratory drive to phrenic motoneurons by presynaptic adenosine A1 receptors. J Neurosci 15:3458–3467

    CAS  PubMed  Google Scholar 

  • Eldridge FL, Millhorn DE, Killey JP (1985) Antagonism by theophylline of respiratory inhibition induced by adenosine. J Appl Physiol 59(5):1428–1433

    CAS  PubMed  Google Scholar 

  • Eldridge FL, Millhorn DE, Waldrop TG, Killey JP (1983) Mechanism of respiratory effects of methylxanthines. Respir Physiol 53:239–261

    Article  CAS  PubMed  Google Scholar 

  • Evoniuk G, Von Borstel RW, Wurtman RJ (1986) Antagonism of the cardiovascular effects of adenosine by caffeine or 8-(-p-Sulfophenyl)theophylline. J Pharmacol Exp Ther 240(20):428–432

    Google Scholar 

  • Ferguson GT, Narendra K, Lattin CD, Goshgarian HG (1999) Clinical effects of theophylline therapy on inspiratory muscle in tetraplegia. Neurorehab Neural Repair 13(3):191–197

    Article  Google Scholar 

  • Fozard JR, Baur F, Wobler C (2003) Antagonist pharmacology of adenosine A2B receptors from rat, guinea pig, and dog. Eur J Pharmacol 475:79–84

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB (1995) Purinoceptors in the nervous system. Pharmacol Toxicol. 76(4):228–239

    Article  CAS  Google Scholar 

  • Fredholm BB, Arslan G, Halldner L, Kull B, Schulte G, Wasserman W (2000) Structure and function of adenosine receptors and their genes. Naunyn Schmiedeberges Arch Pharmacol 362(4–5):364–374

    Article  CAS  Google Scholar 

  • Fredholm BB, Chen J-F, Masino SA, Vaugeois J-M (2005) Actions of adenosine at its receptors in the CNS: insights from knockouts and drugs. Ann Rev Pharmacol Toxicol 45:385–412

    Article  CAS  Google Scholar 

  • Fuller RW, Maxwell DL, Conradson T-BG, Dixon CMS, Barnes PJ (1987) Circulatory and respiratory effects of infused adenosine in conscious man. Br J Clin Pharmacol 24:309–317

    Article  CAS  PubMed  Google Scholar 

  • Fuller DD, Golder FJ, Olson Jr. EB, Mitchell GS (2005) Recovery of phrenic activity and ventilation after cervical spinal cord hemisection in rats. J Appl. Physiol 100:800–806

    Article  PubMed  Google Scholar 

  • Fuller DD, Golder FJ, Olson EB Jr, Mitchell GS (2006) Recovery of phrenic activity and ventilation after cervical spinal hemisection in rats. J Appl Physiol 100(3):800–806

    Article  PubMed  Google Scholar 

  • Fuller DD, Doperalski NJ, Dougherty BJ, Sandhu MS, Bolser DC, Reier PJ (2008) Modest spontaneous recovery of ventilation following chronic high cervical hemisection in rats. Exp Neurol 211(1):97–106

    Article  CAS  PubMed  Google Scholar 

  • Gauda E (2000) Expression and localization of A2A- and A1-adenosine receptor genes in the carotid body and petrosal ganglia. A2A and A1-adenosine receptor m RNA in the carotid body. Adv Exp Med Biol 475:549–558

    CAS  PubMed  Google Scholar 

  • Gaytan SP, Saadani-Makki F, Bodineau L, Frugiere A, Larnicol N, Pasaro R (2006) Effect of postnatal exposure to caffeine on the pattern of adenosine A1 receptor distribution in the respiration-related nuclei of the rat brainstem. Auton Neurosci 126–127:339–346

    Article  PubMed  Google Scholar 

  • Genovese T, Melani A, Esposito E, Mazzon E, Di Paolo R, Bramanti P, Pedata F, Cuzzocrea S (2009) The selective adenosine A2A receptor agonist CGS-21680 reduces JNK MAPK activation in oligodendrocytes in injured spinal cord. Shock 32:578–585

    Article  CAS  PubMed  Google Scholar 

  • Genovese T, Melani A, Esposito E, Paterniti I, Mazzon E, Di Paolo R, Bramanti P, Linden J, Pedata F, Cuzzocrea S (2010) Selective adenosine A2A receptor agonists reduce the apoptosis in an experimental model of spinal cord trauma. J Biol Regul Homeost Agents 24(1):73–86

    CAS  PubMed  Google Scholar 

  • Georgiev V, Johansson B, Fredholm BB (1993) Long term caffeine treatment leads to a decreased susceptibility to NMDA-induced clonic seizures in mice without changes in adenosine A1 receptor number. Brain Res 612:271–277

    Article  CAS  PubMed  Google Scholar 

  • Gleeson K, Zwillich CW (1992) Adenosine stimulation, ventilation and arousal from sleep. Am Rev Respir Dis 145:453–457

    CAS  PubMed  Google Scholar 

  • Golder FJ, Ranganathan L, Satriomoto I, Hoffman M, Lovett-Barr MR, Walters JJ, Baker-Herman TL, Mitchell GS (2008) Spinal adenosine A2A receptor activation elicits long-lasting phrenic motor facilitation. J Neurosci 28(9):2033–2042

    Article  CAS  PubMed  Google Scholar 

  • Golder FJ, Mitchell GS (2005) Spinal synaptic enhancement with acute intermittent hypoxia improves respiratory function after chronic cervical spinal cord injury. J Neurosci 25:2925–2932

    Article  CAS  PubMed  Google Scholar 

  • Gorini M, Duranti R, Misuri G, Valenza T, Spinelli A, Goti P, Gigliotti F, Scano G (1994) Aminophylline and respiratory muscle interaction in normal humans. Am J Physiol 149(5):1227–1234

    CAS  Google Scholar 

  • Goshgarian HG (2009) The crossed phrenic phenomenon and recovery following spinal cord injury. Respir Physiol Neurobiol 169:85–93

    Article  PubMed  Google Scholar 

  • Hadley SD, Walker PD, Goshgarian HG (1999) Effects of serotonin synthesis inhibitor p-CPA on expression of the crossed phrenic phenomenon 4 h following C2 spinal cord hemisection. Exp Neurol 160(2):479–488

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson AJ, Williams M, De Jesus R, Yokoyama R, Oei HH, Ghai GR, Webb RL, Zoganas HC, Stone GA, Jarvis MF (1990) 2-(Arylakylamino) adenosine-5-uronamides. A new class of selective adenosine A2 receptor ligands. J Med Chem 33:1919–1924

    Article  Google Scholar 

  • James E, Nantwi KD (2006) Involvement of peripheral adenosine A2 receptors in adenosine A1-receptor mediated recovery of respiratory motor function following upper cervical spinal cord hemisection. J Spinal Cord Med 29(1):57–66

    PubMed  Google Scholar 

  • Johansson B, Ahlberg S, van der Ploeg I, Brene S, Lindefors N, Peterson H, Fredholm BB (1993) Effects of long term caffeine treatment on A1 and A2 adenosine receptor binding and on mRNA levels in rat brain. Naunyn Schmiedelbergs Arch Pharmacol 347:407–414

    Article  CAS  Google Scholar 

  • Kajana S, Goshgarian HG (2008) Administration of phosphodiesterase inhibitors and an adenosine A1 receptor antagonist induces phrenic nerve recovery in high cervical spinal cord injured rats. Exp Neurol 210(2):671–80

    Article  CAS  PubMed  Google Scholar 

  • Klotz KN (2000) Adenosine receptors and their ligands. Naunyn Schmiedelbergs Arch Pharmacol 362(4):382–91

    Article  CAS  Google Scholar 

  • Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484

    Article  CAS  PubMed  Google Scholar 

  • Latini S, Pazzagli M, Pepeu G, Pedata F (1996) A2 adenosine receptors. Their presence and neuromodulatory role in the central nervous system. Gen Pharmacol 27:925–933

    Article  CAS  PubMed  Google Scholar 

  • Lewis JL, Brookhart JM (1951) Significance of the crossed phrenic phenomenon. J Neurophysiol 166:241–254

    CAS  Google Scholar 

  • Li Y, Oskuian RJ, Day YJ, Rieger JM, Liu L, Kern JA, Linden J (2006) Mouse spinal cord compression injury model is reduced either by activation of A2A receptor on bone marrow-derived cells or on non-bone marrow-derived cells. Neuroscience 141:2029–2039

    Article  CAS  PubMed  Google Scholar 

  • Maxwell DL, Fuller RW, Dolop KB, Dixon CMS, Hughes JMB (1986) Effects of adenosine on ventilatory responses to hypoxia and hypercapnia in humans. J Appl Physiol 1:1762–1766

    Google Scholar 

  • McAdoo DJ, Robak G, Xu G-Y, Hughes MG (2000) Adenosine release upon spinal cord injury. Brain Res 854:152–157

    Article  CAS  PubMed  Google Scholar 

  • McQueen DS, Ribeiro JA (1986) Pharmacological characterization of the receptor involved in chemoexcitation induced by adenosine. Br J Clin Pharmacol 88:615–620

    CAS  Google Scholar 

  • Monteiro EC, Ribeiro JA (1987) Ventilatory effects of adenosine mediated by carotid body chemoreceptors in the rat. Nauyn-Schmiedeberg Arch Pharmacol 335:143–148

    CAS  Google Scholar 

  • Monti D, Carley DW, Radulovacki M (1996) p-SPA, a peripheral adenosine A1 analog, reduces sleep apnea in rats. Pharmacol Biochem Behav 53(2):341–345

    Article  CAS  PubMed  Google Scholar 

  • Murciano D, Aubier M, Vires N, Mal H, Pariente R (1987) Effects of theophylline and enprofylline on diaphragmatic contractility. J Appl Physiol 63(1):51–57

    CAS  PubMed  Google Scholar 

  • Nachazel J, Palecek F (1990) Aminophylline enhances ventilation in phrenicotomized rats. Eur Respir J 3:311–317

    CAS  PubMed  Google Scholar 

  • Nantwi KD, El-Bohy AA, Goshgarian HG (1996) Actions of systematic theophylline on hemidiaphragm recovery in rats following cervical spinal cord hemisection. Exp Neurol 140:53–59

    Article  CAS  PubMed  Google Scholar 

  • Nantwi KD, Goshgarian HG (1998a) Effects of chronic systematic theophylline injections on recovery of hemidiaphragmatic function after cervical spinal cord injury in adult rats. Brain Res 789:126–129

    Article  CAS  PubMed  Google Scholar 

  • Nantwi KD, Goshgarian HG (1998b) Theophylline-induced recovery in a hemidiaphragm paralyzed by hemisection in rats. Contribution of adenosine receptors. Neuropharmacology 37:113–121

    Article  CAS  PubMed  Google Scholar 

  • Nantwi KD, Goshgarian HG (2001) Alkylxanthine-induced recovery of respiratory function following cervical spinal cord injury in adult rats. Exp Neurol 168(1):123–134

    Article  CAS  PubMed  Google Scholar 

  • Nantwi KD, Basura JG, Goshgarian HG (2003a) Adenosine A1 mRNA expression and the effects of systemic theophylline on respiratory function four months after C2 hemisection. J Spinal Cord Med 26(4):364–371

    PubMed  Google Scholar 

  • Nantwi KD, Basura JG, Goshgarian HG (2003b) Effects of long-term theophylline exposure on recovery of respiratory function and expression of adenosine A1 mRNA in cervical spinal cord hemisected adult rats. Exp Neurol 182:232–239

    Article  CAS  PubMed  Google Scholar 

  • Nantwi KD, Goshgarian HG (2002) Actions of specific adenosine receptor A1 and A2 compounds in recovery of phrenic motor output following upper cervical spinal cord injury in adult rats. Clin Exp Pharmacol Physiol 29(10):915–923

    Article  CAS  PubMed  Google Scholar 

  • Nantwi KD, Goshgarian HG (2005) Adenosinergic mechanisms underlying recovery of diaphragm motor function following cervical spinal cord injury: potential therapeutic implications. Neurol Res 27:195–205

    Article  CAS  PubMed  Google Scholar 

  • National Spinal Cord Injury Statistical Center (2008) Spinal cord injury: facts and figures at a glance. UAB, Database, 1–2

    Google Scholar 

  • Newman D, Tamir J, Speedy L, Newman JP, Ben-Dov I (1994) Physiological and neuropsychological effects of theophylline in chronic obstructive pulmonary disease. Isr J Med Sci 30:811–817

    CAS  PubMed  Google Scholar 

  • Nikodijevic O, Sarges R, Daly JW, Jacobson KA (1991) Behavioral effects of A1- and A2-selective adenosine agonists and antagonists: evidence for synergism and antagonism. J Pharmacol Exp Ther 259(1):286–294

    CAS  PubMed  Google Scholar 

  • Olson EB Jr, Vidruk EH, Dempsey JA (1988) Carotid body excision significantly changes ventilatory control in awake rats. Am J Physiol 64(2):666–671

    Google Scholar 

  • Paterniti I, Melani A, Cipriani S, Corti F, Mello T, Mazzon E, Esposito E, Bramanti P, Cuzzocrea S (2011) Selective adenosine A2A receptor agonists and antagonists protect against spinal cord injury through peripheral and central effects. J Neuroinflammation. doi:10.1186/1742

  • Persson CGA, Anderson KE, Kjellin G (1986) Effects of enprofylline and theophylline may show the role of adenosine. Life Sci 38(12):1057–72

    Article  CAS  PubMed  Google Scholar 

  • Petrov T, Alilain WJ, Kreipke C, Nantwi KD (2007) Differential expression of adenosine A1 and A2A receptors after upper cervical (C2) spinal cord hemisection in adult rats. J Spinal Cord Med 30(4):331–7

    PubMed  Google Scholar 

  • Reece TB, Tribble CG, Okonkwo DO, Davis JD, Maxey TS, Gazoni LM, Linden J, Kron IL, Kern JA (2008) Early adenosine receptor activation ameliorates spinal cord reperfusion injury. J Cardiovasc Med 9(4):363–367

    Article  Google Scholar 

  • Reid PG, Watt AH, Penny WJ, Newby AC, Smith AP, Routledge PA (1991) Plasma adenosine concentrations during adenosine-induced respiratory stimulation in man. Eur J Clin Pharmacol 40:175–180

    CAS  PubMed  Google Scholar 

  • Ribeiro JA (1999) Adenosine A2A receptor interactions with receptors for other neurotransmitters and neuromodulators. Eur J Pharmacol 375(1–3):101–113

    Article  CAS  PubMed  Google Scholar 

  • Rivlin AS, Tator CH (1978) Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat. Surg Neurol 10:38–43

    CAS  PubMed  Google Scholar 

  • Saharan RS, Nantwi KD (2006) Changes in the biochemical profiles of mid-cervically located adenosine A1 receptors after long term theophylline administration. J Spinal Cord Med 29(5):520–526

    PubMed  Google Scholar 

  • Schulz-Stubner S (2005) The use of small-dose theophylline for the treatment of bradycardia in patients with spinal cord injury. Anesth Analg 101(6):1809–1811

    Article  PubMed  Google Scholar 

  • Sousa VC, Assaifa-Lopes N, Ribeiro JA, Pratt JA, Brett RR, Sebastiao AM (2011) Regulation of hippocampal cannabinoid CB1 receptor actions by adenosine A1 receptors and chronic caffeine administration: implications for the effects of Δ9-tetrahydrocannabinol on spatial memory. Neuropsychopharmacology 36:472–487

    Article  CAS  PubMed  Google Scholar 

  • Thomas T, Elnazir BK, Marshall JM (1994) Differentiation of the peripherally mediated from the centrally mediated influences of adenosine in the rat during systemic hypoxia. Exp Physiol 79:809–822

    CAS  PubMed  Google Scholar 

  • Tzelepis GE, Bascom AT, Safwan Badr M, Goshgarian HG (2006) Effects of theophylline on pulmonary function in patients with traumatic tetraplegia. J Spinal Cord Med 29(3):227–233

    PubMed  Google Scholar 

  • Varani K, Caramori G, Vincenzi F, Adcock I, Casolari P, Leung E, Maclennan S, Gessi S, Morello S, Barnes PJ, Ito K, Chung KF, Cavallesco G, Azzena G, Papi A, Borea PA (2006) Alteration of adenosine receptors in patients with obstructive pulmonary disease. Am J Respir Crit Care Med 173:398–406

    Article  CAS  PubMed  Google Scholar 

  • Vinit S, Stamegna JC, Boulenguez P, Gauthier P, Kastner A (2007) Restorative respiratory pathways after partial cervical spinal cord injury: role of ipsilateral phrenic afferents. Eur J Neurosci 12:3551–3560

    Article  Google Scholar 

  • Watt AH, Routledge PA (1985) Adenosine stimulates respiration in man. Br J Pharmacol 20:503–506

    Article  CAS  Google Scholar 

  • Winslow C, Rozovsky J (2003) Effect of spinal cord injury on the respiratory system. Arch Phys Med Rehabil 82:803–814

    Article  Google Scholar 

  • Woodcock AA, Johnson MA, Geddes DM (1983) Theophylline prescribing, serum concentrations and toxicity. Lancet 2:610–613

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Child and Human Development Grants 35766 and 31550. The author expresses sincere appreciation for the contributions of Drs. Alilain, Bae, Basura, James, Kreipke, Petrov, and Ms. Saharan. The contributions of Dr. Singh and Ms. Moore-Langston in ongoing studies targeting molecular/survival factors are acknowledged. A special appreciation to Dr. Harry Goshgarian is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwaku D. Nantwi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nantwi, K.D. (2013). Therapeutic Perspectives of Adenosine Receptor Compounds in Functional Restitution After Spinal Cord Injury. In: Masino, S., Boison, D. (eds) Adenosine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3903-5_16

Download citation

Publish with us

Policies and ethics