Skip to main content

Different Ways of Describing Plasma Dynamics

  • Chapter
  • First Online:
Stability and Transport in Magnetic Confinement Systems

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 71))

  • 998 Accesses

Abstract

In order to realize which approximations that are made in the descriptions of plasmas that we generally use, it is instructive to start from the most general description which includes all individual particles and their correlations in the six dimensional phase space (r,v). I the absence of particle sources or sinks we must have a continuity equation for the delta function density N:

$$ N(X,t) = \sum\limits_{{i = 1}}^N {(X - {{X}_i}} (t))\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,X = ({\mathbf{r}},{\mathbf{v}}) $$
$$ \frac{\partial }{{\partial t}}N + \sum\limits_i {\frac{\partial }{{\partial {{r}_i}}}} \left( {N\frac{{\partial {{r}_i}}}{{\partial t}}} \right) + \sum\limits_i {\frac{\partial }{{\partial {{\hbox{v}}_i}}}} \left( {N\frac{{\partial {{\text{v}}_i}}}{{\partial t}}} \right) = 0, $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Chandrasekhar, Stochastic Problems in Physics and Astronomy, Rev. Modern Physics 15, 1 (1943).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. H. Alfve’n, Cosmical Electrodynamics, Oxford University Press, 1950.

    Google Scholar 

  3. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases, Cambridge, London 1958.

    Google Scholar 

  4. W.B. Thompson, An Introduction to Plasma Physics, Pergamon Press, Oxford 1964.

    Google Scholar 

  5. S.I. Braghinskii, in Reviews of Plasma Physics (e.d. M A Leontovich) Consultants Bureau, New York, Vol. 1, 205 (1965).

    Google Scholar 

  6. B.B. Kadomtsev, Plasma Turbulence, Academic Press, New York 1965.

    Google Scholar 

  7. A.B. Mikhailovskii and L I Rudakov, Soviet Physics JETP 17, 621 (1963).

    Google Scholar 

  8. K.V. Roberts and J.B. Taylor, Phys Rev Lett 8, 197 (1962)

    Article  ADS  MATH  Google Scholar 

  9. B Lehnert, Dynamics of Charged Particles, North-Holland, Amsterdam 1964.

    MATH  Google Scholar 

  10. Yu.L. Klimontovich, Statistical Theory of Nonequilibrium Processes in Plasma, Pergamon Press, Oxford 1967.

    Google Scholar 

  11. R.Z. Sagdeev and A.A. Galeev, Nonlinear Plasma Theory, Benjamin, New York 1969.

    MATH  Google Scholar 

  12. T.H. Dupree, Phys. Fluids 9, 1773 (1966).

    Article  MathSciNet  ADS  Google Scholar 

  13. J. Weinstock, Phys. Fluids 12, 1045 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  14. F.L. Hinton and C W Horton, Phys Fluids 14, 116 (1971)

    Article  ADS  MATH  Google Scholar 

  15. S.T. Tsai, F W Perkins and TH Stix, Phys Fluids 13, 2108 (1970).

    Article  ADS  MATH  Google Scholar 

  16. N.A. Krall and A W Trivelpiece, Principles of Plasma Physics, McGraw-Hill 1973.

    Google Scholar 

  17. B.V. Chirikov, Phys. Rep. 52, 263 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  18. W. Horton in Handbook of Plasma Physics Vol II ed:s M.N. Rosenbluth and R.Z. Zagdeev (Elsevier Science Publishers, 1984) PP383–449).

    Google Scholar 

  19. J.P. Mondt and J. Weiland, Phys. Fluids B3, 3248 (1991); Phys. Plasmas 1, 1096 (1994).

    Google Scholar 

  20. W.M. Manheimer and C.N. Lashmore Davies, MHD and Microinstabilities in Confined Plasma, (ed. E.W. Laing) Adam Hilger, Bristol 1989.

    Google Scholar 

  21. A.G. Sitenko and V. Malnev, Plasma Physics Theory, Chapman and Hall, London 1995.

    MATH  Google Scholar 

  22. R.J. Goldston and P.H. Rutherford, An introduction to Plasma Physics, Adam Hilger, Bristol, 1995.

    Book  Google Scholar 

  23. A. Zagorodny and J. Weiland, Physics of Plasmas 6, 2359 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  24. J. Weiland, Collective Modes in Inhomogeneous Plasma, Kinetic and Advanced Fluid Theory, IoP, Bristol 2000.

    Google Scholar 

  25. R.E. Waltz, R.R. Dominguez and G.W. Hammett Phys. Fluids B4, 3138 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weiland, J. (2012). Different Ways of Describing Plasma Dynamics. In: Stability and Transport in Magnetic Confinement Systems. Springer Series on Atomic, Optical, and Plasma Physics, vol 71. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3743-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3743-7_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3742-0

  • Online ISBN: 978-1-4614-3743-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics