Skip to main content

Large-Area Fabrication of Antennas and Nanodiodes

  • Chapter
  • First Online:
Rectenna Solar Cells

Abstract

The conventional fabrication method in semiconductor technology or nanoelectronics is electron beam lithography. We present a new fabrication method that enables the fabrication of high amount microscale and nanoscale devices on various substrates, namely, nanotransfer printing. Using this technique, we produced millions of nanoscale metal-insulator-metal diodes which represent rectifying devices in the terahertz regime and thousands of antenna structures that are sensitive in the wavelength regime of infrared light. The combination of this two (opto)electronic devices forms a rectenna that converts absorbed infrared light into a DC current. With our approach, the fabrication of large arrays of rectennas is possible which leads to applications in the field of infrared detectors or energy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hocker LO, Sokoloff DR, Daneu V, Szoke A, Javan A. Frequency mixing in the infrared and far-infrared using a metal-to-metal point contact diode. Appl Phys Lett. 1968;12:401–2.

    Article  Google Scholar 

  2. Alda J, Rico-García JM, López-Alonso JM, Boreman G. Optical antennas for nano-photonic applications. Nanotechnology. 2005;16:S230–64.

    Article  Google Scholar 

  3. Bareiß M, et al. High-yield transfer printing of metal–insulator–metal nanodiodes. ACS Nano. 2012;6:2853–9. doi:10.1021/nn3004058.

    Article  Google Scholar 

  4. Bean JA, Tiwari B, Bernstein GH, Fay P, Porod W. Long wave infrared detection using dipole antenna-coupled metal-oxide-metal diodes. In: Proceedings of the 33rd International conference on infrared, millimeter and terahertz waves (IRMMW-THz 2008), California Institute of Technology, Pasadena, CA; 15–19 Sept 2008. p. 1, 2. doi:10.1109/ICIMW.2008.4665615. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4665615&isnumber=4665395.

  5. Bartsch ST, Lovera A, Grogg D, Ionescu AM. Nanomechanical silicon resonators with intrinsic tunable gain and sub-nW power consumption. ACS Nano. 2012;6:256–64.

    Article  Google Scholar 

  6. Kim C, Prada M, Blick RH. Coulomb blockade in a coupled nanomechanical electron shuttle. ACS Nano. 2012;6:651–5.

    Article  Google Scholar 

  7. Slovick BA, Bean JA, Boreman GD. Angular resolution improvement of infrared phased-array antennas. IEEE Antennas Wirel Propag Lett. 2011;10:119–22.

    Article  Google Scholar 

  8. Slovick BA, Bean JA, Krenz PM, Boreman GD. Directional control of infrared antenna-coupled tunnel diodes. Opt Express. 2010;18:20960–7.

    Article  Google Scholar 

  9. Bareiß M, et al. Printed array of thin-dielectric metal-oxide-metal (MOM) tunneling diodes. J Appl Phys. 2011;110:044316.

    Article  Google Scholar 

  10. Choi J-H, Kim K-H, Choi S-J, Lee HH. Whole device printing for full colour displays with organic light emitting diodes. Nanotechnology. 2006;17:2246–9.

    Article  Google Scholar 

  11. Li D, Guo LJ. Organic thin film transistors and polymer light emitting diodes patterned by polymer inking and stamping. J Phys D: Appl Phys. 2008;41:105115.

    Article  Google Scholar 

  12. Zaumseil J, et al. Three-dimensional and multilayer nanostructures formed by nanotransfer printing. Nano Lett. 2003;3:1223–7. doi:10.1021/nl0344007.

    Article  Google Scholar 

  13. Loo Y-L, Willett RL, Baldwin KW, Rogers JA. Interfacial chemistries for nanoscale transfer printing. J Am Chem Soc. 2002;124:7654–5. doi:10.1021/ja026355v.

    Article  Google Scholar 

  14. Meitl MA, et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater. 2006;5:33–8.

    Article  Google Scholar 

  15. Bareiß M, et al. Nano antenna array for terahertz detection. IEEE Trans Microw Theory Tech. 2011;59:2751–7.

    Article  Google Scholar 

  16. Bareiß M., et al. Energy harvesting using nano antenna array. In: 2011 11th IEEE conference on nanotechnology (IEEE-NANO); 2011. p. 218–21.

    Google Scholar 

  17. Okada M, et al. Durability of antisticking layer against heat in nanoimprinting evaluated using scanning probe microscopy. Microelectron Eng. 2009;86:657–60.

    Article  Google Scholar 

  18. Weitz RT, Zschieschang U, Forment-Aliaga A, Kälblein D, Burghard M, Kern K, Klauk H. Highly reliable carbon nanotube transistors with patterned gates and molecular gate dielectric. Nano Lett. 2009;9(4):1335–1340.

    Google Scholar 

  19. Bareiß M, Imtaar MA, Fabel B, Scarpa G, Lugli P. Temperature enhanced large area nano transfer printing on Si/SiO2 substrates using Si wafer stamps. J Adhes. 2011;87:893–901.

    Article  Google Scholar 

  20. Ryu H, et al. Logic circuits based on individual semiconducting and metallic carbon-nanotube devices. Nanotechnology. 2010;21(47):475207.

    Article  Google Scholar 

  21. Zschieschang U, et al. Mixed self-assembled monolayer gate dielectrics for continuous threshold voltage control in organic transistors and circuits. Adv Mater. 2010;22:4489–93. doi:10.1002/adma.201001502.

    Article  Google Scholar 

  22. Loo Y-L, Lang DV, Rogers JA, Hsu JWP. Electrical contacts to molecular layers by nanotransfer printing. Nano Lett. 2003;3:913–7.

    Article  Google Scholar 

  23. Jegert G, Kersch A, Weinreich W, Lugli P. Monte Carlo simulation of leakage currents in TiN/ZrO2/TiN capacitors. IEEE Trans Electron Devices. 2011;58:327–34.

    Article  Google Scholar 

  24. Jegert G, Kersch A, Weinreich W, Schroder U, Lugli P. Modeling of leakage currents in high-kappa dielectrics: three-dimensional approach via kinetic Monte Carlo. Appl Phys Lett. 2010;96:062113.

    Article  Google Scholar 

  25. Jirauschek C. Accuracy of transfer matrix approaches for solving the effective mass Schrödinger equation. IEEE J Quantum Electron. 2009;45:1059–67.

    Article  Google Scholar 

  26. Tsu R, Esaki L. Tunneling in a finite superlattice. Appl Phys Lett. 1973;22:562–4.

    Article  Google Scholar 

  27. Sung MG, et al. Scanning noise microscopy on graphene devices. ACS Nano. 2011;5:8620–8.

    Article  Google Scholar 

  28. Kamat PV. Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C. 2008;112:18737–53.

    Article  Google Scholar 

  29. Robertson J. High dielectric constant gate oxides for metal oxide Si transistors. Rep Prog Phys. 2005;69:327–96.

    Article  Google Scholar 

  30. Robertson J. Band offsets of wide-band-gap oxides and implications for future electronic devices. J Vac Sci Technol B. 2000;18:1785–91.

    Article  Google Scholar 

  31. Wingreen NS, Jacobsen KW, Wilkins JW. Resonant tunneling with electron–phonon interaction: an exactly solvable model. Phys Rev Lett. 1988;61:1396–9.

    Article  Google Scholar 

  32. Bean JA, Tiwari B, Bernstein GH, Fay P, Porod W. Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes. J Vac Sci Technol B. 2009;27:11–4.

    Article  Google Scholar 

  33. Krenz PM, et al. Response increase of IR antenna-coupled thermocouple using impedance matching. IEEE J Quantum Electron. 2012;48:659–64.

    Article  Google Scholar 

  34. Bean JA, et al. Antenna length and polarization response of antenna-coupled MOM diode infrared detector. Infrared Phys Technol. 2009;53:182–5.

    Article  Google Scholar 

  35. Krenz PM, Lail BA, Boreman GD. Calibration of lead-line response contribution in measured radiation patterns of IR dipole arrays. IEEE J Quantum Electron. 2011;17:218–21.

    Article  Google Scholar 

Download references

Acknowledgment

The research leading to these results has received funding from the Institute for Advanced Study (IAS), the International Graduate School for Science and Engineering (IGSSE) at the Technische Universität München, and the German Excellence Cluster “Nanosystems Initiative Munich” (NIM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Bareiß .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bareiß, M. et al. (2013). Large-Area Fabrication of Antennas and Nanodiodes. In: Moddel, G., Grover, S. (eds) Rectenna Solar Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3716-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3716-1_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3715-4

  • Online ISBN: 978-1-4614-3716-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics