Skip to main content

On the Solar Energy Harvesting Efficiency of Nano-antennas

  • Chapter
  • First Online:
Rectenna Solar Cells

Abstract

The radiation efficiency of nano-antennas is a key parameter in the emerging field of IR and optical energy harvesting. This parameter is the first factor in the total efficiency product by which nano-antennas are able to convert incident light into useful energy. The second factor is the matching efficiency due to the unavoidable mismatch between nantenna and rectifier impedance. The radiation efficiency is investigated in terms of the metal used as conductor and the dimensions of the nano-antenna. The results set upper bounds for any possible process transforming light into electrical energy. Combined with the theoretical upper bounds involving the matching and rectifying process (see Chap. 3), these upper bounds are the equivalent of the theoretical upper bounds for the efficiency of conventional solar cells. Silver shows the highest efficiencies, both in free space and on top of a glass (SiO2) substrate, with radiation efficiencies near or slightly above 90 % and a total solar power harvesting efficiency of about 60–70 %. This is considerably higher than conventional solar cells. It is found that fine-tuning of the dipole dimensions is crucial to optimize the efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kotter DK, Novak SD, Slafer WD, Pinhero P. Solar nantenna electromagnetic collectors. In: Second international conference on energy sustainability, Jacksonville, FL; Aug 2008. p. 10–14.

    Google Scholar 

  2. Service RF. Solar cells gear up to go somewhere under the rainbow. Science. 2008;2:1585.

    Article  Google Scholar 

  3. Vandenbosch GAE, Ma Z. Upper bounds for the solar energy harvesting efficiency of nano-antennas. Nano Energy. 2012;1(3):494–502.

    Article  Google Scholar 

  4. Gao H, Li K, Kong F, Xie H, Zhao J. Optimizing nano-optical antenna for the enhancement of spontaneous emission. Prog Electromagn Res. 2010;104:313–31.

    Article  Google Scholar 

  5. Huang J-S, Feichtner T, Biagioni P, Hecht B. Impedance matching and emission properties of nanoantennas in an optical nanocircuit. Nano Lett. 2009;9(5):1897–902.

    Article  Google Scholar 

  6. Knight MW, Sobhani H, Norlander P, Halas NJ. Photodetection with active optical antennas. Science. 2011;332:6.

    Article  Google Scholar 

  7. Muhlschlegel P, Eisler HJ, Martin OJF, Hecht B, Pohl DW. Resonant optical antennas. Science. 2005;308(5728):1607–9.

    Article  Google Scholar 

  8. Vandenbosch GAE, Volski V, Verellen N, Moshchalkov VV. On the use of the method of moments in plasmonic applications. Radio Sci. 2011;46(5):6. doi:10.1029/2010RS004582.

    Article  Google Scholar 

  9. Lal S, Link S, Halas NJ. Nano-optics from sensing to waveguiding. Nat Photonics. 2007;1(11):641–8.

    Article  Google Scholar 

  10. Ishi T, Fujikata J, Makita K, Baba T, Ohashi K. Si nano-photodiode with a surface plasmon antenna. Jpn J Appl Phys. 2005;44(12–15):364–6.

    Article  Google Scholar 

  11. Alu A, Engheta N. Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. Phys Rev Lett. 2008;101(4):043901.

    Article  Google Scholar 

  12. Alù A, Engheta N. Hertzian plasmonic nanodimer as an efficient optical nanoantenna. Phys Rev B. 2008;78(19):195111.

    Article  Google Scholar 

  13. Gonzalez FJ, et al. The effect of metal dispersion on the resonance of antennas at infrared frequencies. J Infrared Phys Technol. 2009;52(1):48–51.

    Article  Google Scholar 

  14. Li J, Salandrino A, Engheta N. Optical spectrometer at the nanoscale using optical Yagi-Uda nanoantennas. Phys Rev B. 2009;79:195104.

    Article  Google Scholar 

  15. Kosako T, Kadoya Y, Hofmann HF. Directional control of light by a nano-optical Yagi-Uda antenna. Nat Photonics. 2010;4(5):312–5.

    Article  Google Scholar 

  16. Gevaux D. Optical antennas—nano-antenna picks up green light. Nat Photonics. 2007;1(2):90.

    Article  Google Scholar 

  17. Alda J, Rico-Garcia J, Lopez-Alonso JM, Boreman G. Optical antennas for nano photonic applications. Nanotechnology. 2005;16:S230–4.

    Article  Google Scholar 

  18. Tian B, Lieber CM. Design, synthesis, and characterization of novel nanowire structures for photovoltaics and intracellular probes. Pure Appl Chem. 2011;83:2153–69.

    Article  Google Scholar 

  19. Dong Y, Tian B, Kempa T, Lieber CM. Coaxial Group III-nitride nanowire photovoltaics. Nano Lett. 2009;9:2183–7.

    Article  Google Scholar 

  20. Tian B, Kempa TJ, Lieber CM. Single nanowire photovoltaics. Chem Soc Rev. 2009;38:16–24.

    Article  Google Scholar 

  21. Yu R, Lin Q, Leung S-F, Fan Z. Nanomaterials and nanostructures for efficient light absorption and photovoltaics. Nano Energy. 2012;1(1):57–72.

    Article  Google Scholar 

  22. Vrancken M, Vandenbosch GAE. Semantics of dyadic and mixed potential field representation for 3D current distributions in planar stratified media. IEEE Trans Antennas Propag. 2003;51(10):2778–87.

    Article  Google Scholar 

  23. Schols Y, Vandenbosch GAE. Separation of horizontal and vertical dependencies in a surface/volume integral equation approach to model quasi 3D structures in multilayered media. IEEE Trans Antennas Propag. 2007;55(4):1086–94.

    Article  MathSciNet  Google Scholar 

  24. Vasylchenko A, Schols Y, De Raedt W, Vandenbosch GAE. Quality assessment of computational techniques and software tools for planar-antenna analysis. IEEE Antennas Propag Mag. 2009;51(1):23–38.

    Article  Google Scholar 

  25. http://www.lumerical.com.

  26. Pelayo F, De Arquer G, Volski V, Verellen N, Vandenbosch GAE, Moshchalkov VV. Engineering the input impedance of optical nano dipole antennas: materials, geometry and excitation effect. IEEE Trans Antennas Propag. 2011;59(9):3144–53.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Fund for Scientific Research Flanders (FWO-V) of the Flemish government for its financial support through the project G.0897.10N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy A. E. Vandenbosch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vandenbosch, G.A.E., Ma, Z. (2013). On the Solar Energy Harvesting Efficiency of Nano-antennas. In: Moddel, G., Grover, S. (eds) Rectenna Solar Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3716-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3716-1_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3715-4

  • Online ISBN: 978-1-4614-3716-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics