Skip to main content

Circulating Cell-derived Vesicles Mediate Tumor Progression

  • Chapter
  • First Online:
Emerging Concepts of Tumor Exosome–Mediated Cell-Cell Communication

Abstract

Tumor cells have been demonstrated to release membranous structures, which are termed as microvesicles or exosomes depending on specific characteristics, including size and composition. These cell-derived vesicles can exhibit an array of proteins, lipids, and nucleic acids derived from the originating tumor. It is now recognized that these vesicular components are critical conveyers of intercellular communication and mediated many of the pathological conditions associated with cancer development, progression, and therapeutic failures. Through the expression of components responsible for angiogenesis promotion, stromal remodeling, signaling pathway activation through growth factor/receptor transfer, chemoresistance, and genetic intercellular exchange, tumor exosomes/microvesicles could represent a central mediator of the tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor DD, Doellgast GJ (1979) Quantitation of peroxidase-antibody binding to membrane fragments using column chromatography. Anal Biochem 98:53–59

    PubMed  CAS  Google Scholar 

  2. Taylor DD, Gerçel-Taylor C (2011) Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments. Seminars in Immunopathology, (J. Schifferli, ed), Springer, 33:441–454.

    Google Scholar 

  3. Trams EG, Lauter CJ, Salem Jr C, Heine U (1981) Exfoliation of membrane ecto-enzymes in the form of microvesicles. Biochim Biophys Acta 645:63–70

    PubMed  CAS  Google Scholar 

  4. Pan BT, Blostein R, Johnstone RM (1983) Loss of the transferrin receptor during the maturation of sheep reticulocytes in vitro: an immunological approach. Biochem J 210:37–47

    PubMed  CAS  Google Scholar 

  5. Harding C, Heuser J, Stahl P (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97:329–339.

    PubMed  CAS  Google Scholar 

  6. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262:9412–9420

    PubMed  CAS  Google Scholar 

  7. Taylor DD, Homesley HD, Doellgast GJ (1980) Binding of specific peroxidase-labeled antibody to placental-type phosphatase on tumor-derived membrane fragments. Cancer Res 40:4064–4069

    PubMed  CAS  Google Scholar 

  8. Taylor DD, Homesley HD, Doellgast GJ (1983) Membrane-associated immunoglobulins in cyst and ascites fluids of ovarian cancer patients. Am J Reprod Immunol 3:7–11

    PubMed  CAS  Google Scholar 

  9. Taylor DD, Levy EM, Black PH (1985) Shed membrane vesicles: a mechanism for tumor induced immunosuppression. In: Mitchell MS, Reif AE (eds) Immunity to cancer. Academic, New York, pp. 369–373

    Google Scholar 

  10. Taylor DD, Black PH (1986) Shedding of plasma membrane fragments: neoplastic and develpomental importance. In: Steinberg M (ed) Developmental Biology vol. 3. Plenum New York pp. 33–57.

    Google Scholar 

  11. Taylor DD, Gerçel-Taylor C, Weese JL (1989) Expression and shedding of mdr-1 antigen by variants of the murine B16 melanoma. Surgical Forum 40:406–408

    Google Scholar 

  12. Manahan KJ, Taylor DD, Gercel-Taylor C (2001) Clonal heterogeneity of p53 mutations in ovarian cancer. Int J Oncol 19:387–394

    PubMed  CAS  Google Scholar 

  13. Chinni SR, Gercel-Taylor C, Falchetto RA, Shabanowitz J, Hunt DF, Taylor DD (1997) Cathepsin D and glucose-regulated protein 78 recognized by the humoral response of ovarian cancer patients. Clin Cancer Res 3:1557–1564

    PubMed  CAS  Google Scholar 

  14. Théry C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593

    PubMed  Google Scholar 

  15. Atay S, Gercel-Taylor C, Kesimer M, Taylor DD (2011) Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells. Exp Cell Res 317:1192–1202

    PubMed  CAS  Google Scholar 

  16. Simons M, Raposo G (2009) Exosomes: vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581

    PubMed  CAS  Google Scholar 

  17. Zumaquero E, Muñoz P, Cobo M, Lucena G, Pavón EJ, Martín A, Navarro P, García-Pérez A, Ariza-Veguillas A, Malavasi F, Sancho J, Zubiaur M (2010) Exosomes from human lymphoblastoid B cells express enzymatically active CD38 that is associated with signaling complexes containing CD81, Hsc-70, and Lyn. Exp Cell Res 316:2692–2706

    PubMed  CAS  Google Scholar 

  18. Admyre C, Telemo E, Almqvist N, Lotvall J, Lahesmaa R, Scheynius A, Gabrielsson S (2008) Exosomes — nanovesicles with possible roles in allergy inflammation. Allergy 63:404–408

    PubMed  CAS  Google Scholar 

  19. Montecalvo A, Shufesky WJ, Stolz DB, Sullivan MG, Wang Z, Divito SJ, Papworth GD, Watkins SC, Robbins PD, Larregina AT, Morelli AE (2008) Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J Immunol 180:3081–3090

    PubMed  CAS  Google Scholar 

  20. Rak J (2010) Microparticles in cancer. Semin Thromb Hemost, 36:888–906

    CAS  Google Scholar 

  21. Anand PK (2010) Exosomal membrane molecules are potent immune response modulators. Commun Integr Biol 3:405–408

    PubMed  Google Scholar 

  22. Kesimer M, Scull M, Brighton B, DeMaria G, Burns K, O’Neal W, Pickles RJ, Sheehan JK (2009) Characterization of exosome-like vesicles released from human tracheobronchial ciliated epithelium: a possible role in innate defense. FASEB J 23:1858–1868

    PubMed  CAS  Google Scholar 

  23. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, Goud B, Benaroch P, Hacohen N, Fukuda M, Desnos C, Seabra MC, Darchen F, Amigorena S, Moita LF, Thery C (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12:19–30 (sup pp 1–13)

    PubMed  CAS  Google Scholar 

  24. Valapala M, Vishwanatha JK (2011) Liid raft endocytosis and exosomal transport facilitate extracellular trafficking of annexin A2. J Biol Chem 286:30911–30925

    PubMed  CAS  Google Scholar 

  25. Mathivanan S, Simpson RJ (2009) ExoCarta: a compendium of exosomalproteins and RNA. Proteomics 9:4997–5000

    PubMed  CAS  Google Scholar 

  26. Yu X, Harris SL, Levine AJ (2006) The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res 66:4795–4801

    PubMed  Google Scholar 

  27. Graner MW, Alzate O, Dechkovskaia AM, Keene JD, Sampson JH, Mitchell DA, Bigner DD (2009) Proteomic and immunologic analyses of brain tumor exosomes. FASEB J 23:1541–1557

    PubMed  CAS  Google Scholar 

  28. Taylor DD, Gercel-Taylor C (2005) Tumor-derived exosomes as mediates of T-cell signaling defects. Br J Cancer 92:305–311

    PubMed  CAS  Google Scholar 

  29. Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11:688–699

    PubMed  CAS  Google Scholar 

  30. Piper RC, Katzmann DJ (2007) Biogenesis and function of multivesicular bodies. Ann Rev Cell Dev Biol 23:519–547

    CAS  Google Scholar 

  31. Doring T, Gotthardt K, Stieler J, Prange R (2010) γ2-Adaptin is functioning in the late endosomal sorting pathway and interacts with ESCRT-I and -III subunits. Biochim Biophys Acta 1803:1252–1264

    PubMed  Google Scholar 

  32. Park JE, Tan HS, Datta A, Lai RC, Zhang H, Meng W, Lim SK, Sze SK (2010) Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics 9:1085–1099

    PubMed  CAS  Google Scholar 

  33. Marhaba R, Klingbeil P, Nuebel T, Nazarenko I, Buechler MW, Zoeller M (2008) CD44 and EpCAM: Cancer-initiating cell markers. Curr Mol Med 8:784–804

    PubMed  CAS  Google Scholar 

  34. Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J, Cheng Z, Shah SV, Wang GJ, Zhang L, Grizzle WE, Mobley J, Zhang HG (2009) Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer 124:2621–2633.

    PubMed  CAS  Google Scholar 

  35. Hong BS, Cho JH, Kim H, Choi EJ, Rho S, Kim J, Kim JH, Choi DS, Kim YK, Hwang D, Gho YS (2009) Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics 10:556

    PubMed  Google Scholar 

  36. Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, Lochnit G, Preissner KT, Zöller M (2010) Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res 70:1668–1678

    PubMed  CAS  Google Scholar 

  37. Keller S, König AK, Marmé F, Runz S, Wolterink S, Koensgen D, Mustea A, Sehouli J, Altevogt P (2009) Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett 278:73–81

    PubMed  CAS  Google Scholar 

  38. Dolo V, D’Ascenzo S, Violini S, Pompucci L, Festuccia C, Ginestra A, Vittorelli ML, Canevari S, Pavan A (1999) Matrix-degrading proteinases are shed in membrane vesicles by ovarian cancer cells in vivo and in vitro. Clin Exp Metastasis 17:131–140

    PubMed  CAS  Google Scholar 

  39. Dolo V, Ginestra A, Cassara D, Ghersi G, Nagase H, Vittorelli ML (1999) Shed membrane vesicles and selective localization of gelatinases and MMP-9/TIMP-1 complexes. Ann N Y Acad Sci 878:497–499

    PubMed  CAS  Google Scholar 

  40. Graves LE, Ariztia EV, Navari JR, Matzel HJ, Stack MS, Fishman DA (2004) Proinvasive properties of ovarian cancer ascites-derived membrane vesicles. Cancer Res 64:7045–7049

    PubMed  CAS  Google Scholar 

  41. Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–612

    PubMed  CAS  Google Scholar 

  42. McLellan AD (2009) Exosome release by primary B cells. Crit Rev Immunol 29:203–217

    PubMed  CAS  Google Scholar 

  43. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ (2006) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20:1487–1495

    PubMed  CAS  Google Scholar 

  44. Ichim TE, Zhong Z, Kaushal S, Zheng X, Ren X, Hao X, Joyce JA, Hanley HH, Riordan NH, Koropatnick J, Bogin V, Minev BR, Min WP, Tullis RH (2008) Exosomes as a tumor immune escape mechanism: possible therapeutic implications. J Transl Med 6:37

    PubMed  Google Scholar 

  45. Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, Cheng Y, Krogan NJ, Plemenitas A, Peterlin BM (2010) HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic 11:110–122

    PubMed  CAS  Google Scholar 

  46. Izquierdo-Useros N, Naranjo-Gómez M, Archer J, Hatch SC, Erkizia I, Blanco J, Borràs FE, Puertas MC, Connor JH, Fernández-Figueras MT, Moore L, Clotet B, Gummuluru S, Martinez-Picado J (2009) Capture and transfer if HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood 113:2732–2741

    PubMed  CAS  Google Scholar 

  47. Izquierdo-Useros N, Naranjo-Gómez M, Erkizia I, Puertas MC, Borràs FE, Blanco J, Martinez-Picado J (2010) HIV and mature dendritic cells: trojan exosomes riding the Trojan horse? PLoS Pathog 6:e1000740

    Google Scholar 

  48. Al-Nedawi K, Meehan B, Rak J (2009) Microvesicles: messengers and mediators of tumor progression. Cell Cycle 8:2014–2018

    PubMed  CAS  Google Scholar 

  49. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10:619–624

    PubMed  CAS  Google Scholar 

  50. Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J (2009) Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci USA 106:3794–3799

    PubMed  Google Scholar 

  51. Viswanathan M, Sangiliyandi G, Vinod SS, Mohanprasad BK, Shanmugam G (2003) Genomic instability and tumor-specific alterations in oral squamous cell carcinomas assessed by inter-(simple sequence repeat) PCR. Clin Cancer Res 9:1057–1062

    PubMed  CAS  Google Scholar 

  52. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78:838–848

    PubMed  CAS  Google Scholar 

  53. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry Jr WT, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    PubMed  CAS  Google Scholar 

  54. Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J, Ratajczak MZ (2005) Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 113:752–760

    PubMed  CAS  Google Scholar 

  55. Koh W, Sheng CT, Tan B, Lee QY, Kuznetsov V, Kiang LS, Tanavde V (2010) Analysis of deep sequencing microRNA expression profile from human embryonic stem cells derived mesenchymal stem cells reveals possible role of let-7 microRNA family in downstream targeting of hepatic nuclear factor 4 alpha. BMC Genomics 11(Suppl 1):S6

    PubMed  Google Scholar 

  56. Yuan XL, Chen L, Li MX, Dong P, Xue J, Wang J, Zhang TT, Wang XA, Zhang FM, Ge HL, Shen LS, Xu D (2010) Elevated expression of Foxp3 in tumor-infiltrating Treg cells suppresses T-cell proliferation and contributes to gastric cancer progression in a COX-2-dependent manner. Clin Immunol 134:277–288

    PubMed  CAS  Google Scholar 

  57. Whiteside TL (2005) Tumour-derived exosomes or microvesicles: another mechanism of tumour escape from the host immune system? Br J Cancer 92:209–211

    PubMed  CAS  Google Scholar 

  58. Valenti R, Huber V, Iero M, Filipazzi P, Parmiani G, Rivoltini L (2007) Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res 67:2912–2915

    PubMed  CAS  Google Scholar 

  59. Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19:43–51

    PubMed  CAS  Google Scholar 

  60. Huber V, Fais S, Iero M, Lugini L, Canese P, Squarcina P, Zaccheddu A, Colone M, Arancia G, Gentile M, Seregni E, Valenti R, Ballabio G, Belli F, Leo E, Parmiani G, Rivoltini L (2005) Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterol 128:1796–1804

    CAS  Google Scholar 

  61. Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside TL (2009) Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol 183:3720–3730

    PubMed  CAS  Google Scholar 

  62. Huber V, Filipazzi P, Iero M, Fais S, Rivoltini L (2008) More insights into the immunosuppressive potential of tumor exosomes. J Transl Med 6:63

    PubMed  Google Scholar 

  63. Taylor DD, Gercel-Taylor C, Lyons KS, Stanson J, Whiteside TL (2003) T-cell apoptosis and suppression of T-cell receptor/CD3-zeta by Fas ligand-containing membrane vesicles shed from ovarian tumors. Clin Cancer Res 9:5113–5119

    PubMed  CAS  Google Scholar 

  64. Taylor DD, Gercel-Taylor C, Weese JL (1989) Expression and shedding of mdr-1 antigen by variants of the murine B16 melanoma. Surg Forum 40:406–408

    Google Scholar 

  65. Taylor DD, Gercel-Taylor C, Gall SA (1996) Expression and shedding of CD44 isoforms by gynecologic cancer patients. J Soc Gynecol Invest 3:289–294

    CAS  Google Scholar 

  66. Taylor DD, Lyons KS, Gercel-Taylor C (2002) Shed membrane fragment-associated markers for endometrial and ovarian cancers. Gynecol Oncol 84:443–448

    PubMed  Google Scholar 

  67. Schorey JS, Bhatnagar S (2008) Exosome function: from tumor immunology to pathogen biology. Traffic 9:871–881

    PubMed  CAS  Google Scholar 

  68. Zindl CL, Chaplin DD (2010) Immunology: tumor immune evasion. Science 328:697–698

    PubMed  CAS  Google Scholar 

  69. Moserle L, Amadori A, Indraccolo S (2009) The angiogenic switch: implications in the regulation of tumor dormancy. Curr Mol Med 9:935–941

    PubMed  CAS  Google Scholar 

  70. Gao D, Nolan D, McDonnell K, Vahdat L, Benezra R, Altorki N, Mittal V (2009) Bone marrow-derived endothelial progenitor cells contribute to the angiogenic switch in tumor growth and metastatic progression. Biochim Biophys Acta 1796:33–40

    PubMed  CAS  Google Scholar 

  71. Zwirner NW, Croci DO, Domaica CI, Rabinovich GA (2010) Overcoming the hurdles of tumor immunity by targeting regulatory pathways in innate and adaptive immune cells. Curr Pharm Des 16:255–267

    PubMed  CAS  Google Scholar 

  72. Soloski MJ (2001) Recognition of tumor cells by the innate immune system. Curr Opin Immunol 13:154–162

    PubMed  CAS  Google Scholar 

  73. Park JE, Tan HS, Datta A, Lai RC, Zhang H, Meng W, Lim SK, Sze SK (2010) Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics 9:1085–1099

    PubMed  CAS  Google Scholar 

  74. Ashiru O, Boutet P, Fernandez-Messina L, Aquera-Gonzalez S, Skepper JN, Vales-Gomez M, Reyburn HT (2010) Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res 70:481–489

    PubMed  CAS  Google Scholar 

  75. Groh V, Wu J, Yee C, Spies T (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734–738

    PubMed  CAS  Google Scholar 

  76. Frey AB (2006) Myeloid suppressor cells regulate the adaptive immune response to cancer. J Clin Invest 116:2587–2590

    PubMed  CAS  Google Scholar 

  77. Makarenkova VP, Bansal V, Matta BM, Perez LA, Ochoa JB (2006) CD11b+/Gr-1 + myeloid suppressor cells cause T cell dysfunction after traumatic stress. J Immunol 176:2085–2094

    PubMed  CAS  Google Scholar 

  78. Yu S, Liu C, Su K, Wang J, Liu Y, Zhang L, Li C, Cong Y, Kimberly R, Grizzle WE, Falkson C, Zhang HG (2007) Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J Immunol 178:6867–6875

    PubMed  Google Scholar 

  79. Soderberg A, Barral AM, Soderstrom M, Sander B, Rosen A (2007) Redox-signaling transmitted in trans to neighboring cells by melanoma-derived TNF-containing exosomes. Free Radic Biol Med 43:90–99

    PubMed  Google Scholar 

  80. Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, Boireau W, Rouleau A, Simon B, Lanneau D, De Thonel A, Multhoff G, Hamman A, Martin F, Chauffert B, Solary E, Zitvogel L, Garrido C, Ryffel B, Borg C, Apetoh L, Rébé C, Ghiringhelli F (2010) Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 120:457–471

    PubMed  CAS  Google Scholar 

  81. Xie Y, Zhang H, Li W, Deng Y, Munegowda MA, Chibbar R, Qureshi M, Xiang J (2010) Dendritic cells recruit T cell exosomes via exosomal LFA-1 leading to inhibition of CD8+ CTL responses through downregulation of peptide/MHC class I and Fas ligand-mediated cytotoxicity. J Immunol 185:5268–5278

    PubMed  CAS  Google Scholar 

  82. Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S, Rivoltini L (2008) Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ 15:80–88

    PubMed  CAS  Google Scholar 

  83. Wieckowski E, Whiteside TL (2006) Human tumor-derived vs dendritic cell derived exosomes have distinct biologic roles and molecular profiles. Immunol Res 36:247–254

    PubMed  CAS  Google Scholar 

  84. Tomihari M, Chung JS, Akiyoshi H, Cruz PD Jr, Ariizumi K (2010) DC-HIL/glycoprotein Nmb promotes growth of melanoma in mice by inhibiting the activation of tumor-reactive T cells. Cancer Res 70:5778–5787

    PubMed  CAS  Google Scholar 

  85. Kim JW, Wieckowski E, Taylor DD, Reichert TE, Watkins S, Whiteside TL (2005) Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res 11:1010–1020

    PubMed  CAS  Google Scholar 

  86. Laulagnier K, Grand D, Dujardin A, Hamdi S, Vincent-Schneider H, Lankar D, Salles JP, Bonnerot C, Perret B, Record M (2004) PLD2 is enriched on exosomes and its activity is correlated to the release of exosomes. FEBS Lett 572:11–14

    PubMed  CAS  Google Scholar 

  87. Abusamra AJ, Zhong Z, Zheng X, Li M, Ichim TE, Chin JL, Min WP (2005) Tumor exosomes expressing Fas ligand mediate CD8+ T cell apoptosis. Blood Cells Mol Dis 35:169–173

    PubMed  CAS  Google Scholar 

  88. Clayton A, Tabi Z (2005) Exosomes and the MICA-NKG2D system in cancer. Blood Cells Mol Dis 34:206–213

    PubMed  CAS  Google Scholar 

  89. Clayton A, Mitchell JP, Court J, Linnane S, Mason MD, Tabi Z (2008) Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol 180:7249–7258

    PubMed  CAS  Google Scholar 

  90. Perone MJ, Larregina AT, Shufesky WJ, Papworth GD, Sullivan ML, Zahorchak AF, Stolz DB, Baum LG, Watkins SC, Thomson AW, Morelli AE (2006) Transgenic galectin-1 induces maturation of dendritic cells that elicit contrasting responses in naïve and activated T cells. J Immunol 176:7207–7220

    PubMed  CAS  Google Scholar 

  91. Bamias A, Tsiatas ML, Kafantari E, Liakou C, Rodolakis A, Voulgaris Z, Vlahos G, Papageorgiou T, Tsitsilonis O, Bamia C, Papatheodoridis G, Politi E, Archimandritis A, Antsaklis A, Dimopoulos MA (2007) Significant differences of lymphocytes isolated from ascites of patients with ovarian cancer compared to blood and tumor lymphocytes. Association of CD3+CD56+  cells with platinum resistance. Gynecol Oncol 106:75–81

    PubMed  CAS  Google Scholar 

  92. Kalinski P, Okada H (2010) Polarized dendritic cells as cancer vaccines: directing effector-type T cells to tumors. Semin Immunol 22(3):173–82

    Google Scholar 

  93. Maccalli C, Pisarra P, Vegetti C, Sensi M, Parmiani G, Anichini A (1999) Differential loss of T cell signaling molecules in metastatic melanoma patients’ T lymphocyte subsets expressing distinct TCR variable regions. J Immunol 163:6912–6923

    PubMed  CAS  Google Scholar 

  94. Nieuwland R, van der Post JA, Gemma CA, Kenter G, Sturk A (2010) Microparticles and exosomes in gynecologic neoplasias. Semin Thromb Hemost 36:925–929

    PubMed  CAS  Google Scholar 

  95. Ristorcelli E, Beraud E, Verrando P, Villard C, Lafitte D, Sbarra V, Lombardo D, Verine A (2008) Human tumor nanoparticles induce apoptosis of pancreatic cancer cells. FASEB J 22:3358–3369

    PubMed  CAS  Google Scholar 

  96. Wada J, Onishi H, Suzuki H, Yamasaki A, Nagai S, Morisaki T, Katano M (2010) Surface-bound TGF-beta1 on effusion-derived exosomes participates in maintenance of number and suppressive function of regulatory T cells in malignant effusions. Anticancer Res 30:3747–3757

    PubMed  CAS  Google Scholar 

  97. Xie Y, Bai O, Yuan J, Chibbar R, Slattery K, Wei Y, Deng Y, Xiang J (2009) Tumor apoptotic bodies inhibit CTL responses and antitumor immunity via membrane-bound transforming growth factor-beta-1 inducing CD8+ T-cell anergy and CD4+ Tr1 cell responses. Cancer Res 69:7756–7766

    PubMed  CAS  Google Scholar 

  98. Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M, Whiteside TL (2010) Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS One 5:e11469

    Google Scholar 

  99. Temme S, Eis-Hubinger AM, McLellan AD, Koch N (2010) The herpes simplex virus-1 encoded glycoprotein B diverts HLA-DR into the exosome pathway. J Immunol 184:236–243

    PubMed  CAS  Google Scholar 

  100. Miguet L, Béchade G, Fornecker L, Zink E, Felden C, Gervais C, Herbrecht R, Van Dorsselaer A, Mauvieux L, Sanglier-Cianferani S (2009) Proteomic analysis of malignant B-cell derived microparticles reveals CD148 as a potentially useful antigenic biomarker for mantle cell lymphoma diagnosis. J Proteome Res 8:3346–3354

    PubMed  CAS  Google Scholar 

  101. Taylor DD, Black PH (1985) Inhibition of macrophage Ia antigen expression by shed plasma membrane vesicles from metastatic murine melanoma lines. J Natl Cancer Inst 74:859–867

    PubMed  CAS  Google Scholar 

  102. Pelton JJ, Taylor DD, Fowler WC, Gercel-Taylor C, Carp NZ, Weese JL (1991) Lymphokine-activated killer cell suppressor factor in malignant effusions. Arch Surg 126:476–480

    PubMed  CAS  Google Scholar 

  103. Albanese J, Meterissian S, Kontogiannea M, Dubreuil C, Hand A, Sorba S, Dainiak N (1998) Biologically acive Fas antigen and its cognate ligand are expressed on plasma membrane-derived extracellular vesicles. Blood 91:3862–3874

    PubMed  CAS  Google Scholar 

  104. Kim SH, Bianco NR, Shufesky WJ, Morelli AE, Robbins PD (2007) MHC class II+ exosomes in plasma suppress inflammation in an antigen-specific and Fas ligand/Fas-dependent manner. J Immunol 179(4):2235–41

    PubMed  CAS  Google Scholar 

  105. Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461

    PubMed  CAS  Google Scholar 

  106. Ehrt S, Schnappinger D, Bekiranov S, Drenkow J, Shi S, Gingeras TR, Gaasterland T, Schoolnik G, Nathan C (2001) Reprogramming of the macrophage transcriptome in response to interferon-gamma and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J Exp Med 194:1123–1140

    PubMed  CAS  Google Scholar 

  107. Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303–7311

    PubMed  CAS  Google Scholar 

  108. Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87:2095–2147

    PubMed  CAS  Google Scholar 

  109. Scotton CJ, Martinez FO, Smelt MJ, Sironi M, Locati M, Mantovani A, Sozzani S (2005) Transcriptional profiling reveals complex regulation of the monocyte IL-1 beta system by IL-13. J Immunol 174:834–845

    PubMed  CAS  Google Scholar 

  110. Roman J, Ritzenthaler JD, Fenton MJ, Roser S, Schuyler W (2000) Transcriptional regulation of the human interleukin 1beta gene by fibronectin: role of protein kinase C and activator protein 1 (AP-1). Cytokine 12:1581–1589

    PubMed  CAS  Google Scholar 

  111. Pacifici R, Roman J, Kimble R, Civitelli R, Brownfield CM, Bizzarri C (1994) Ligand binding to monocyte alpha 5 beta 1 integrin activates the alpha 2 beta 1 receptor via the alpha 5 subunit cytoplasmic domain and protein kinase C. J Immunol 153:2222–2233

    PubMed  CAS  Google Scholar 

  112. Ruoslahti E (1996) RGD and other recognition sequences for integrins. Ann Rev Cell Dev Biol 12:697–715

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas D. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Taylor, D., Cicek, GT. (2013). Circulating Cell-derived Vesicles Mediate Tumor Progression. In: Zhang, HG. (eds) Emerging Concepts of Tumor Exosome–Mediated Cell-Cell Communication. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3697-3_6

Download citation

Publish with us

Policies and ethics