Skip to main content

Extracellular Fluid Volume in the Hypoalbuminemic Diabetic Patient

  • Chapter
  • First Online:
The Kidney in Heart Failure
  • 1118 Accesses

Abstract

Edema formation in the majority of patients with the nephrotic syndrome can best be explained by an overfill mechanism. This is particularly true for those patients with diabetic nephropathy. The maintenance of a normal plasma volume in the setting of hypoalbuminemia is the result of a series of edema preventing factors that act both to oppose fluid filtration across the capillary wall and to return fluid back into the vascular tree. The single most important variable in determining whether these factors are sufficient to prevent edema formation is the degree of renal salt retention. The variability in renal salt retention explains the poor correlation between the presence or absence of edema and the serum albumin concentration. The precise derangement in renal salt excretion has not been precisely localized but appears to reside in the distal nephron. The exact mechanism underlying this defect is unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaysen GA, Martinez CA. The metabolism of serum proteins in nephrosis. AKF Nephrol Lett. 1988;5:31–46.

    Google Scholar 

  2. Diaz-Buxo JA. Is continuous ambulatory peritoneal dialysis adequate long-term therapy for end-stage renal disease? A critical assessment. J Am Soc Nephrol. 1992;3:1039–48.

    PubMed  CAS  Google Scholar 

  3. Kaysen GA, Schoenfeld PY. Albumin homeostasis in patients undergoing continuous ambulatory peritoneal dialysis. Kidney Int. 1984;25:107–14.

    Article  PubMed  CAS  Google Scholar 

  4. Kaysen GA, Gambertoglio J, Felts J, et al. Albumin synthesis, albuminuria and hyperlipidemia in nephrotic patients. Kidney Int. 1987;31:1368–76.

    Article  PubMed  CAS  Google Scholar 

  5. Katz J, Sellers AL, Bonorris G. Effect of nephrectomy on plasma albumin catabolism in experimental nephrosis. J Lab Clin Med. 1964;63:680–6.

    PubMed  CAS  Google Scholar 

  6. Bernard DB. Extrarenal complications of the nephrotic syndrome. Kidney Int. 1988;33:1184–202.

    Article  PubMed  CAS  Google Scholar 

  7. Galaske RG, Baldamus CA, Stolte H. Plasma protein handling in the rat kidney: micropuncture experiments in the acute heterologous phase of anti-GBM-nephritis. Pflugers Arch. 1978;375: 269–77.

    Article  PubMed  CAS  Google Scholar 

  8. Park CH, Maack T. Albumin absorption and catabolism by isolated perfused proximal convoluted tubules of the rabbit. J Clin Invest. 1984;73:767–77.

    Article  PubMed  CAS  Google Scholar 

  9. Exaire E, Pollak VE, Pesce AJ, Ooi BS. Albumin and gamma-globulin in the nephron of the normal rat and following the injection of aminonucleoside. Nephron. 1972;9:42–54.

    Article  PubMed  CAS  Google Scholar 

  10. Olbricht CJ, Cannon JK, Tisher CC. Cathepsin B and L in nephron segments of rats with puromycin aminonucleoside nephrosis. Kidney Int. 1987;32:354–61.

    Article  PubMed  CAS  Google Scholar 

  11. Kaysen GA. Albumin metabolism in the nephritic syndrome: the effect of dietary protein intake. Am J Kidney Dis. 1988;12:461–80.

    PubMed  CAS  Google Scholar 

  12. Kaysen GA, Gambertoglio J, Jimenez I, Jones H, Hutchinson FN. Effect of dietary protein intake on albumin homeostasis in nephritic patients. Kidney Int. 1986;29:572–7.

    Article  PubMed  CAS  Google Scholar 

  13. Kaysen GA, Kirkpatrick WG, Couser WG. Albumin homeostasis in the nephrotic rat: nutritional considerations. Am J Physiol. 1984;247:F192–202.

    PubMed  CAS  Google Scholar 

  14. Kaysen GA. Albumin turnover in renal disease. Miner Electrolyte Metab. 1998;24:55–63.

    Article  PubMed  CAS  Google Scholar 

  15. Rosenberg ME, Swanson JE, Thomas BL, Hostetter TH. Glomerular and hormonal responses to dietary protein intake in human renal disease. Am J Physiol. 1987;253:F1083–90.

    PubMed  CAS  Google Scholar 

  16. Kumagai H, Onoyama K, Iseki K, et al. Role of renin angiotensin aldosterone on minimal change nephrotic syndrome. Clin Nephrol. 1985;23:229–35.

    PubMed  CAS  Google Scholar 

  17. Usberti M, Gazzotti R, Poiesi C, Avanzo L, Ghielmi S. Considerations on the sodium retention in nephrotic syndrome. Am J Nephrol. 1995;15:38–47.

    Article  PubMed  CAS  Google Scholar 

  18. Eisenberg S. Postural changes in plasma volume in hyoalbuminemia. Arch Intern Med. 1963;112:140–5.

    Article  Google Scholar 

  19. Joles J, Rabelink T, Braam B, Koomans H. Plasma volume regulation: defenses against edema formation (with special emphasis on hypoproteinemia). Am J Nephrol. 1993;13:399–412.

    Article  PubMed  CAS  Google Scholar 

  20. Smith JD, Hayslett JP. Reversible renal failure in the nephrotic syndrome. Am J Kidney Dis. 1992;19:201–13.

    PubMed  CAS  Google Scholar 

  21. Dorhout Mees EJ, Geers AB, Koomans HA. Blood volume and sodium retention in the nephrotic syndrome: a controversial pathophysiological concept. Nephron. 1984;36:201–11.

    Article  PubMed  CAS  Google Scholar 

  22. Geers AB, Koomans HA, Roos JC, et al. Functional relationships in the nephrotic syndrome. Kidney Int. 1984;26:324–30.

    Article  PubMed  CAS  Google Scholar 

  23. Dorhout Mees EJ, Roos JC, Boer P, et al. Observations on edema formation in the nephrotic syndrome in adults with minimal lesions. Am J Med. 1979;67:378–84.

    Article  Google Scholar 

  24. Meltzer J, Keim HJ, Laragh JH, et al. Nephrotic syndrome: vasoconstriction and hypervolemic types indicated by renin-sodium profiling. Ann Intern Med. 1979;91:688–96.

    PubMed  CAS  Google Scholar 

  25. Walle J, Donckerwolcke R, Boer P, Van Isselt H, Koomans H, Joles J. Blood volume, colloid osmotic pressure and F-cell ratio in children with the nephrotic syndrome. Kidney Int. 1996;49:1471–7.

    Article  Google Scholar 

  26. Geers AB, Koomans HA, Boer P, Dorhout Mees EJ. Plasma and blood volumes in patients with the nephrotic syndrome. Nephron. 1984;38:170–3.

    Article  PubMed  CAS  Google Scholar 

  27. Chonko AM, Bay WH, Stein J, et al. The role of renin and aldosterone in the salt retention of edema. Am J Med. 1977;63:881–9.

    Article  PubMed  CAS  Google Scholar 

  28. Hammond TG, Whitworth JA, Saines D, et al. Renin-angiotensin-aldosterone system in nephrotic syndrome. Am J Kidney Dis. 1984;4:18–23.

    PubMed  CAS  Google Scholar 

  29. Rascher W, Tulassay T. Hormonal regulation of water metabolism in children with nephrotic syndrome. Kidney Int. 1987;32:S83–9.

    Google Scholar 

  30. Tulassay T, Rascher W, Lang RE, et al. Atrial natriuretic peptide and other vasoactive hormones in nephrotic syndrome. Kidney Int. 1987;31:1391–5.

    Article  PubMed  CAS  Google Scholar 

  31. Usberti M, Federico S, Meccariello S, et al. Role of plasma vasopressin in the impairment of water excretion in nephrotic syndrome. Kidney Int. 1984;25:422–9.

    Article  PubMed  CAS  Google Scholar 

  32. Koomans HA, Geers AB, Meiracker AH, et al. Effects of plasma volume expansion on renal salt handling in patients with the nephrotic syndrome. Am J Nephrol. 1984;4:227–34.

    Article  PubMed  CAS  Google Scholar 

  33. Rabelink T, Bijlsma J, Koomans H. Iso-oncotic volume expansion in the nephrtoic syndrome. Clin Sci. 1993;84:627–32.

    PubMed  CAS  Google Scholar 

  34. Rascher W, Tulassay T, Seyberth HW, et al. Diuretic and hormonal response to head-out water immersion in nephrotic syndrome. J Pediatr. 1986;109:609–14.

    Article  PubMed  CAS  Google Scholar 

  35. Berlyen GM, Sutton J, Brown C, et al. Renal salt and water handling in water immersion in the nephrotic syndrome. Clin Sci. 1981;61:605–10.

    Google Scholar 

  36. Krishna GG, Danovitch K, Danovitch GM. Effects of water immersion on renal function in the nephrotic syndrome. Kidney Int. 1982;21:395–401.

    Article  PubMed  CAS  Google Scholar 

  37. Peterson C, Madson B, Perman A, et al. Atrial natriuretic peptide and the renal response to hypervolemia in nephrotic humans. Kidney Int. 1988;34:825–31.

    Article  PubMed  CAS  Google Scholar 

  38. Anderson SB, Rossing N. Metabolism of albumin and G-globulin during albumin infusions and during plasmapheresis. Scand J Clin Lab Invest. 1967;20:183–4.

    Article  Google Scholar 

  39. Joles JA, Koomans HA, Kortlandt W, Boer P, Dorhout Mees EJ. Hypoproteinemia and recovery from edema in dogs. Am J Physiol. 1988;254:F887–94.

    PubMed  CAS  Google Scholar 

  40. Bennhold H, Klaus D, Scheurlen PG. Volume regulation and renal function in analbuminemia. Lancet. 1960;2:1169–70.

    Article  Google Scholar 

  41. Koomans HA, Boer WH, Dorhout Mees EJ. Renal function during recovery from minimal lesions nephrotic syndrome. Nephron. 1987;47:173–8.

    Article  PubMed  CAS  Google Scholar 

  42. Brown EA, Markandu N, Sagnella GA, et al. Sodium retention in nephrotic syndrome is due to an intrarenal defect: evidence from steroid-induced remission. Nephron. 1985;39:290–5.

    Article  PubMed  CAS  Google Scholar 

  43. Ichikawa I, Rennke HG, Hoyer JR, et al. Role for intrarenal mechanisms in the impaired salt excretion of experimental nephrotic syndrome. J Clin Invest. 1983;71:91–103.

    Article  PubMed  CAS  Google Scholar 

  44. Firth JD, Raine AEG, Ledingham JGG. Abnormal sodium handling occurs in the isolated perfused kidney of the nephrotic rat. Clin Sci. 1989;76:387–95.

    PubMed  CAS  Google Scholar 

  45. Hollander W, Reilly P, Burrows BA. Lymphatic flow in human subjects as indicted by the disappearance of 131I-labeled albumin from the subcutaneous tissue. J Clin Lab Invest. 1960;40: 222–3.

    Google Scholar 

  46. Fadnes HO, Pape JF, Sundsfjord JA. A study on oedema mechanism in nephrotic syndrome. Scand J Clin Lab Invest. 1986;46:533–8.

    Article  PubMed  CAS  Google Scholar 

  47. Koomans HA, Kortlandt W, Geers AB, et al. Lowered protein content of tissue fluid in patients with the nephrotic syndrome: observations during disease and recovery. Nephron. 1985;40:391–5.

    Article  PubMed  CAS  Google Scholar 

  48. Hommel E, Mathiesen ER, Aukland K, et al. Pathophysiological aspects of edema formation in diabetic nephropathy. Kidney Int. 1990;38:1187–92.

    Article  PubMed  CAS  Google Scholar 

  49. Wraight EP. Capillary permeability of protein as a factor in the control of plasma volume. J Physiol. 1974;237:39–47.

    PubMed  CAS  Google Scholar 

  50. Aukland K. Is extracelluar fluid volume regulated? Acta Physiol Scand. 1989;136:59–67.

    Article  Google Scholar 

  51. Koomans HA, Braam B, Geers AB, et al. The importance of plasma protein for blood volume and blood pressure homeostasis. Kidney Int. 1986;30:730–5.

    Article  PubMed  CAS  Google Scholar 

  52. Grausz H, Lieberman R, Earley LE. Effect of plasma albumin on sodium reabsorption in patients with nephrotic syndrome. Kidney Int. 1972;1:47–54.

    Article  PubMed  CAS  Google Scholar 

  53. Bernard DB, Alexander EA, Couser WG, Levinsky NG. Renal sodium retention during volume expansion in experimental nephrotic syndrome. Kidney Int. 1978;14:478–85.

    Article  PubMed  CAS  Google Scholar 

  54. Kim S, Frokiaer J, Nielsen S. Pathogenesis of edema in nephrotic syndrome: role of epithelial sodium channel. Nephrology. 2007;12 Suppl 3:S8–10.

    Article  PubMed  CAS  Google Scholar 

  55. Doucet A, Favre G, Deschenes G. Molecular mechanism of edema formation in nephrotic syndrome: therapeutic implications. Pediatr Nephrol. 2007;22:1983–90.

    Article  PubMed  Google Scholar 

  56. Valentin JP, Qiu C, Muldowney WP, Ying W, Gardner D, Humphreys M. Cellular basis for blunted volume expansion natriuresis in experimental nephritic syndrome. J Clin Invest. 1992;90:1302–12.

    Article  PubMed  CAS  Google Scholar 

  57. Perico N, Remuzzi G. Renal handling of sodium in the nephrotic syndrome. Am J Nephrol. 1993;13:413–21.

    Article  PubMed  CAS  Google Scholar 

  58. Lee E, Humphreys M. Phosphodiesterase activity as a mediator of renal resistance to ANP in pathological salt retention. Am J Physiol. 1996;271:F3–6.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biff F. Palmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Palmer, B.F. (2012). Extracellular Fluid Volume in the Hypoalbuminemic Diabetic Patient. In: Bakris, G. (eds) The Kidney in Heart Failure. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3694-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3694-2_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-3693-5

  • Online ISBN: 978-1-4614-3694-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics