Skip to main content

Using Absolute Risk to Predict Fracture Risk in Clinical Practice

  • Chapter
  • First Online:
Bone Densitometry for Technologists

Abstract

One of the most important uses of the bone density measurement is the prediction of the patient’s fracture risk. In the past, the statistical measure called relative risk (RR) was employed to convey the patient’s risk of fracture to the treating physician as well as to the patient. This resulted in statements such as “the patient’s risk of spine fracture is increased fourfold” or the “patient’s RR of spine fracture is 4.0.” Although this was the best that previously could be done, such statements actually conveyed little useful information. If a patient’s risk of spine fracture is increased fourfold, what does that really mean? The risk of fracture is fourfold greater than what? And while a fourfold increase in fracture risk sounded dire, it might not be. If the unstated baseline risk was extremely small, a fourfold increase in that extremely small baseline risk is still going to be very small. For this reason, the expression of a patient’s fracture risk in clinical practice as absolute risk (AR) is overwhelmingly preferred. The use of RR is considered obsolete and inappropriate. The utility of RR as a statistical expression of risk is unquestioned in clinical trials, but it has no role in clinical practice in the interpretation of DXA bone density data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Global fracture risk refers to the risk of all fractures combined.

  2. 2.

    Site-specific fracture risk is the risk of a specific type of fracture, such as spine fracture risk or hip fracture risk.

  3. 3.

    Cohorts included the Rotterdam Study, the European Vertebral Osteoporosis Study (EVOS), the Canadian Multicentre Osteoporosis Study (CaMOS), Rochester, Sheffield, Dubbo, Hiroshima, and Gothenburg (2 cohorts).

  4. 4.

    DMARDs—disease-modifying antirheumatic drugs. These are drugs such as methotrexate, Imuran, Cytoxan, and Plaquenil.

  5. 5.

    TNF blockers are drugs such as Enbrel, Humira, and Remicade.

  6. 6.

    On the FORE website, it is noted that the FORE FRC is closely aligned with FRAX®, web version 3.0. Although the current web version of FRAX® is version 3.7, updates 3.1–3.6 do not affect this alignment.

References

  1. Melton LJ, Atkinson EJ, O’Fallon WM, Wahner HW, Riggs BL. Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res. 1993;8:1227–33.

    Article  PubMed  Google Scholar 

  2. Cummings SR, Black DM, Nevitt MC, et al. Bone density at various sites for prediction of hip fracture. Lancet. 1993;341:72–5.

    Article  PubMed  CAS  Google Scholar 

  3. Kanis JA, Johansson H, Oden A, et al. A family history of fracture and fracture risk: a meta-analysis. Bone. 2004;35(5):1029–37.

    Article  PubMed  CAS  Google Scholar 

  4. Kanis JA, Johnell O, De Laet C, et al. A meta-analysis of previous fracture and subsequent fracture risk. Bone. 2004;35(2):375–82.

    Article  PubMed  CAS  Google Scholar 

  5. Kanis JA, Johansson H, Oden A, et al. A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res. 2004;19(6):893–9.

    Article  PubMed  Google Scholar 

  6. Kanis JA, Johansson H, Oden A, et al. A meta-analysis of milk intake and fracture risk: low utility for case finding. Osteoporos Int. 2005;16(7):799–804.

    Article  PubMed  Google Scholar 

  7. Kanis JA, Johansson H, Johnell O, et al. Alcohol intake as a risk factor for fracture. Osteoporos Int. 2005;16(7):737–42.

    Article  PubMed  Google Scholar 

  8. Kanis JA, Johnell O, Oden A, et al. Smoking and fracture risk: a meta-analysis. Osteoporos Int. 2005;16(2):155–62.

    Article  PubMed  CAS  Google Scholar 

  9. De Laet C, Kanis JA, Oden A, et al. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int. 2005;16(11):1330–8.

    Article  PubMed  Google Scholar 

  10. Kanis JA, Oden A, Johnell O, et al. The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int. 2007;18(8):1033–46.

    Article  PubMed  CAS  Google Scholar 

  11. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19(4):385–97.

    Article  PubMed  CAS  Google Scholar 

  12. Kanis JA, Johansson H, Oden A, McCloskey EV. Guidance for the adjustment of FRAX according to the dose of glucocorticoids. Osteoporos Int. 2011;22:809–16.

    Article  PubMed  CAS  Google Scholar 

  13. Looker AC, Wahner HW, Dunn WL, et al. Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int. 1998;8:468–89.

    Article  PubMed  CAS  Google Scholar 

  14. Looker AC, Wahner WH, Dunn WL, et al. Proximal femur bone mineral levels of US adults. Osteoporos Int. 1995;5:389–409.

    Article  PubMed  CAS  Google Scholar 

  15. National Osteoporosis Foundation. Clinician’s guide to prevention and treatment of osteoporosis. Washington, D.C: National Osteoporosis Foundation; 2008. p. 1–30.

    Google Scholar 

  16. Dawson-Hughes B, Tosteson AN, Melton III LJ, et al. Implications of absolute fracture risk assessment for osteoporosis practice guidelines in the USA. Osteoporos Int. 2008;19(4):449–58.

    Article  PubMed  CAS  Google Scholar 

  17. Tosteson AN, Melton III LJ, Dawson-Hughes B, et al. Cost-effective osteoporosis treatment thresholds: the United States perspective. Osteoporos Int. 2008;19(4):437–47.

    Article  PubMed  CAS  Google Scholar 

  18. Papaioannou A, Morin S, Cheung AM, et al. 2010 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada: summary. CMAJ. 2010;182:1864–73.

    PubMed  Google Scholar 

  19. Compston J, Cooper A, Cooper C, et al. Guidelines for the diagnosis and management of osteoporosis in postmenopausal women and men form the age of 50 in the UK. Updated July 2010. Available at http://www.shef.ac.uk/NOGG/downloads.html. Accessed 5/22/2011.

  20. Filtering FRAX®. Osteoporos Int. 2010;21:537–41.

    Article  Google Scholar 

  21. McCloskey E, Compston J, Cooper C. The US FRAX® filter: avoiding confusion or hindering progress? Osteoporos Int. 2010;21:885.

    Article  PubMed  CAS  Google Scholar 

  22. Ettinger B, Hillier TA, Pressman A, Che M, Hanley DA. Simple computer model for calculating and reporting 5-year osteoporotic fracture risk in postmenopausal women. J Womens Health. 2005;14(2):159–71.

    Article  Google Scholar 

  23. Siminoski K, Leslie WD, Frame H, et al. Recommendations for bone mineral density reporting in Canada: a shift to absolute fracture risk assessment. J Clin Densitom. 2007;10:120–3.

    Article  PubMed  Google Scholar 

  24. Leslie WD, Lix LM. Simplified 10-year absolute fracture risk assessment: a comparison of men and women. J Clin Densitom. 2010;13:141–6.

    Article  PubMed  Google Scholar 

  25. Leslie WD, Berger C, Langsetmo L, et al. Construction and validation of a simplified fracture risk assessment tool for Canadian women and men: results from the CaMos and Manitoba cohorts. Osteoporos Int. 2010;22:1873–83. doi:10.1007/s00198-010-1445-5.

    Article  PubMed  Google Scholar 

  26. Kreiger N, Tenenhouse A, Joseph L, et al. Research notes: the Canadian Multicentre Osteoporosis Study (CaMos)-background, rationale, methods. Can J Aging. 1999;18:376–87.

    Article  Google Scholar 

  27. Roos NP, Shapiro E. Revisiting the Manitoba centre for health policy and evaluation and its population-based health information system. Med Care. 1999;37:JS10–4.

    Article  PubMed  CAS  Google Scholar 

  28. Simons LA, McCallum J, Simons J, et al. The Dubbo study: an Australian prospective community study of the health of elderly. Aust N Z J Med. 1990;20:783–9.

    Article  PubMed  CAS  Google Scholar 

  29. Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV. Development of a nomogram for individualizing hip fracture risk in men and women. Osteoporos Int. 2007;18:1109–17.

    Article  PubMed  CAS  Google Scholar 

  30. Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV. Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporos Int. 2008;19:1431–44.

    Article  PubMed  CAS  Google Scholar 

  31. Sandhu SK, Nguyen ND, Center JR, et al. Prognosis of fracture: evaluation of predictive accuracy of the FRAX™ algorithm and Garvan nomogram. Osteoporos Int. 2010;21:863–71.

    Article  PubMed  CAS  Google Scholar 

  32. Langsetmo L, Nguyen TV, Nguyen ND, et al. Independent external validation of nomograms for predicting risk of low-trauma fracture and hip fracture. CMAJ. 2011;183:E107–14.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bonnick, S.L., Lewis, L.A. (2013). Using Absolute Risk to Predict Fracture Risk in Clinical Practice. In: Bone Densitometry for Technologists. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3625-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3625-6_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3624-9

  • Online ISBN: 978-1-4614-3625-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics