Skip to main content

Skeletal Anatomy in Densitometry

  • Chapter
  • First Online:
Bone Densitometry for Technologists

Abstract

Densitometry is primarily a quantitative measurement technique rather than a skeletal imaging technique. Nevertheless, there are unique aspects of skeletal anatomy in densitometry that must be appreciated to properly utilize the technology and interpret the quantitative results as well as the skeletal images. Some of these issues are discussed again in conjunction with performing the various studies in Chap. 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

     VFA imaging, as discussed in Chap. 13, was not available at the time of this study.

  2. 2.

    This is not the same grading system as now used to quantify aortic calcification on plain films or lateral DXA images of the spine. See Chap. 13 for a discussion of the 24-point and 8-point grading systems in use today.

  3. 3.

     See Chap. 6 for a discussion of spine phantoms, including the Hologic spine phantom.

  4. 4.

    Although a mathematical conversion of 1/3 to a percentage would result in a value of 33.3 %, the site when named as a percentage is called the 33 % site and is located on the radius or forearm at a location that represents 33 %, not 33.3 %, of the length of the ulna.

  5. 5.

     See Chap. 1 for a discussion of radiographic photodensitometry, radiographic absorptiometry, and computerized radiogrammetry.

  6. 6.

     The calcaneus is also commonly known as the os calcis or heel.

References

  1. Louis O, Van Den Winkel P, Covens P, Schoutens A, Osteaux M. Dual-energy X-ray absorptiometry of lumbar vertebrae: relative contribution of body and posterior elements and accuracy in relation with neutron activation analysis. Bone. 1992;13:317–20.

    Article  PubMed  CAS  Google Scholar 

  2. Peel NFA, Johnson A, Barrington NA, Smith TWD, Eastell R. Impact of anomalous vertebral segmentation of measurements of bone mineral density. J Bone Miner Res. 1993;8:719–23.

    Article  PubMed  CAS  Google Scholar 

  3. Bornstein PE, Peterson RR. Numerical variation of the presacral vertebral column in three population groups in North America. Am J Phys Anthropol. 1996;25:139–46.

    Article  Google Scholar 

  4. Davis JW, Grove JS, Wasnich RD, Ross PD. Spatial relationships between prevalent and incident fractures. Bone. 1999;24:261–4.

    Article  PubMed  CAS  Google Scholar 

  5. Nevitt MC, Ross PD, Palermo L, Musliner T, Genant HK, Thompson DE. Association of prevalent vertebral fractures, bone density, and alendronate treatment with incident vertebral fractures: effect of number and spinal location of fractures. Bone. 1999;25:613–9.

    Article  PubMed  CAS  Google Scholar 

  6. Krolner B, Berthelsen B, Nielsen SP. Assessment of vertebral osteopenia-comparison of spinal radiography and dual-photon absorptiometry. Acta Radiol Diagn. 1982;23:517–21.

    CAS  Google Scholar 

  7. Rand T, Seidl G, Kainberger F, et al. Impact of spinal degenerative changes on the evaluation of bone mineral density with dual energy X-ray absorptiometry (DXA). Calcif Tissue Int. 1997;60:430–3.

    Article  PubMed  CAS  Google Scholar 

  8. Cann CE, Rutt BK, Genant HK. Effect of extraosseous calcification on vertebral mineral measurement. Calcif Tissue Int. 1983;35:667.

    Google Scholar 

  9. Liu G, Peacock M, Eilam O, Dorulla G, Braunstein E, Johnston CC. Effect of osteoarthritis in the lumbar spine and hip on bone mineral density and diagnosis of osteoporosis in elderly men and women. Osteoporos Int. 1997;7:564–9.

    Article  PubMed  CAS  Google Scholar 

  10. Frye MA, Melton LJ, Bryant SC, et al. Osteoporosis and calcification of the aorta. Bone Miner. 1992;19:185–94.

    Article  PubMed  CAS  Google Scholar 

  11. Frohn J, Wilken T, Falk S, Stutte HJ, Kollath J, Hor G. Effect of aortic sclerosis on bone mineral measurements by dual-photon absorptiometry. J Nucl Med. 1990;32:259–62.

    Google Scholar 

  12. Orwoll ES, Oviatt SK, Mann T. The impact of osteophytic and vascular calcifications on vertebral mineral density measurements in men. J Clin Endocrinol Metab. 1990;70:1202–7.

    Article  PubMed  CAS  Google Scholar 

  13. Reid IR, Evans MC, Ames R, Wattie DJ. The influence of osteophytes and aortic calcification on spinal mineral density in post-menopausal women. J Clin Endocrinol Metab. 1991;72:1372–4.

    Article  PubMed  CAS  Google Scholar 

  14. Banks LM, Lees B, MacSweeney JE, Stevenson JC. Do degenerative changes and aortic calcification influence long-term bone density measurements? Abstract. 8th International Workshop on Bone Densitometry 1991. Bad Reichenhall, Germany.

    Google Scholar 

  15. Drinka PJ, DeSmet AA, Bauwens SF, Rogot A. The effect of overlying calcification on lumbar bone densitometry. Calcif Tissue Int. 1992;50:507–10.

    Article  PubMed  CAS  Google Scholar 

  16. Cherney DD, Laymon MS, McNitt A, Yuly S. A study on the influence of calcified intervertebral disk and aorta in determining bone mineral density. J Clin Densitom. 2002;5:193–8.

    Article  PubMed  Google Scholar 

  17. Stutzman ME, Yester MV, Dubovsky EV. Technical aspects of dual-photon absorptiometry of the spine. Technique. 1997;15:177–81.

    Google Scholar 

  18. Morgan SL, Lopez-Ben R, Nunnally N, et al. The effect of common artifacts lateral to the spine on bone mineral density in the lumbar spine. J Clin Densitom. 2008;11:243–9.

    Article  PubMed  Google Scholar 

  19. Morgan SL, Lopez-Ben R, Nunnally N, et al. “Black hole artifacts”—a new potential pitfall for DXA accuracy? J Clin Densitom. 2008;11:266–75.

    Article  PubMed  Google Scholar 

  20. Labio ED, Del Rosario DB, Strasser SI, McCaughan GW, Crawford BA. Effect of ascites on bone density measurement in cirrhosis. J Clin Densitom. 2007;10:391–4.

    Article  PubMed  Google Scholar 

  21. Girardi FP, Parvataneni HK, Sandhu HS, et al. Correlation between vertebral body rotation and two-dimensional vertebral bone density measurement. Osteoporos Int. 2001;12:738–40.

    Article  PubMed  CAS  Google Scholar 

  22. Rupich RC, Griffin MG, Pacifici R, Avioli LV, Susman N. Lateral dual-energy radiography: artifact error from rib and pelvic bone. J Bone Miner Res. 1992;7:97–101.

    Article  PubMed  CAS  Google Scholar 

  23. Jergas M, Breitenseher M, Gluer CC, et al. Which vertebrae should be assessed using lateral dual-energy X-ray absorptiometry of the lumbar spine? Osteoporos Int. 1995;5:196–204.

    Article  PubMed  CAS  Google Scholar 

  24. Nevitt MC, Lane NE, Scott JC, et al. Radiographic osteoarthritis of the hip and bone mineral density. Arth Rheum. 1995;38:907–16.

    Article  CAS  Google Scholar 

  25. Preidler KW, White LS, Tashkin J, et al. Dual-energy X-ray absorptiometric densitometry in osteoarthritis of the hip. Influence of secondary bone remodeling of the femoral neck. Acta Radiol. 1997;38:539–42.

    PubMed  CAS  Google Scholar 

  26. Hans D, Biot B, Schott AM, Meunier PJ. No diffuse osteoporosis in lumbar scoliosis but lower femoral bone density on the convexity. Bone. 1996;18:15–7.

    Article  PubMed  CAS  Google Scholar 

  27. Mussolino ME, Looker AC, Madans JH, et al. Phalangeal bone density and hip fracture risk. Arch Intern Med. 1997;157:433–8.

    Article  PubMed  CAS  Google Scholar 

  28. Huang C, Ross PD, Yates AJ, et al. Prediction of fracture risk by radiographic absorptiometry and quantitative ultrasound: a prospective study. Calcif Tissue Int. 1998;6:380–4.

    Article  Google Scholar 

  29. Cummings SR, Black DM, Nevitt MC, et al. Bone density at various sites for prediction of hip fractures. Lancet. 1993;341:72–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bonnick, S.L., Lewis, L.A. (2013). Skeletal Anatomy in Densitometry. In: Bone Densitometry for Technologists. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3625-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3625-6_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3624-9

  • Online ISBN: 978-1-4614-3625-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics