Skip to main content

Advanced Integrated Photonics in Doped Silica Glass

  • Chapter
  • First Online:
Nonlinear Photonics and Novel Optical Phenomena

Abstract

Broadband optical communication systems are rapidly becoming the key to overcome the stringent limitations imposed by standard electronic telecommunication networks. However, in order to complete the inevitable transition from electronics to photonics, several critical requirements must be addressed, including lowering energetic demands, achieving higher efficiency, increasing bandwidth and flexibility, all within a compact form factor [1–3]. In particular, it is broadly accepted that future photonic devices must be CMOS compatible in order to exploit the existing silicon fabrication technology that has been largely developed during the last 60 years [4–7]. Following this idea, there has been a tremendous growth of hybrid optoelectronic technologies that has not only responded to the need of lowering costs, but has also enabled on-chip ultra-fast signal processing. However, these hybrid solutions are an intermediate step to achieve the ambitious goal of an all-optical technology, which would bring together the intrinsic benefit of lowering the production costs and simplifying future ultrafast communication networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Alduino, M. Paniccia, Interconnects: wiring electronics with light. Nat. Photon. 1, 153–155 (2007)

    ADS  Google Scholar 

  2. B.J. Eggleton, S. Radic, D.J. Moss, Nonlinear Optics in Communications: From Crippling Impairment to Ultrafast Tools, in Optical Fiber Telecommunications V: Components and Sub-systems, ed. by I.P. Kaminow, T. Li, A.E. Willner, 5th edn. (Academic, Oxford, 2008). Chap. 20. ISBN ISBN 978-0123741714

    Google Scholar 

  3. G. Lifante, Integrated Photonics (Wiley, England, 2003). ISBN ISBN 978-0470848685

    Google Scholar 

  4. N. Izhaky, M.T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, M.J. Paniccia, Development of CMOS-compatible integrated silicon photonics devices. IEEE J. Sel. Top. Quant. Electron. 12, 1688–1698 (2006)

    Google Scholar 

  5. L. Tsybeskov, D.J. Lockwood, M. Ichikawa, Silicon photonics: CMOS going optical. Proc. IEEE 97, 1161–1165 (2009)

    Google Scholar 

  6. R. Won, M. Paniccia, Integrating silicon photonics. Nat. Photon. 4, 498–499 (2010)

    Google Scholar 

  7. A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, M. Paniccia, Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform. IEEE J. Sel. Top. Quant. Electron. 16, 23–32 (2010)

    Google Scholar 

  8. A.C. Turner, M.A. Foster, A.L. Gaeta, M. Lipson, Ultra-low power parametric frequency conversion in a silicon microring resonator. Opt. Express 16, 4881–4887 (2008)

    ADS  Google Scholar 

  9. S. Venugopal Rao, K. Moutzouris, M. Ebrahimzadeh, Nonlinear frequency conversion in semiconductor optical waveguides using birefringent, modal and quasi-phase-matching techniques. J. Opt. A: Pure Appl. Opt. 6, 569–584 (2004)

    Google Scholar 

  10. R. Salem, M.A. Foster, A.C. Turner, D.F. Geraghty, M. Lipson, A.L. Gaeta, Signal regeneration using low-power four-wave mixing on silicon chip. Nat. Photon. 2, 35–38 (2008)

    ADS  Google Scholar 

  11. V.G. Ta’eed, M. Shokooh-Saremi, L. Fu, D.J. Moss, M. Rochette, I.C.M. Littler, B.J. Eggleton, Y. Ruan, B. Luther-Davies, Integrated all-optical pulse regeneration in chalcogenide waveguides. Opt. Lett. 30, 2900–2902 (2005)

    ADS  Google Scholar 

  12. B.G. Lee, X. Chen, A. Biberman, X. Liu, I.-W. Hsieh, C.-Y. Chou, J.I. Dadap, F. Xia, W.M.J. Green, L. Sekaric, Y.A. Vlasov, R.M. Osgood, K. Bergman, Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks. IEEE Photon. Tech. Lett. 20, 398–400 (2008)

    ADS  Google Scholar 

  13. N.S. Bergano, Wavelength division multiplexing in long-haul transoceanic transmission systems. J. Lightwave Tech. 23, 4125–4139 (2005)

    ADS  Google Scholar 

  14. T.A. Ibrahim, V. Van, P.-T. Ho, All-optical time-division demultiplexing and spatial pulse routing with a GaAs/AlGaAs microring resonator. Opt. Lett. 27, 803–805 (2002)

    ADS  Google Scholar 

  15. L.G. Kazovsky, N. Cheng, W.-T. Shaw, D. Gutierrez, Broadband Optical Access Networks (Wiley, England, 2011). ISBN ISBN 978-0-470-18235-2

    Google Scholar 

  16. G.P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, CA, 2006). ISBN ISBN 978-0123695161

    Google Scholar 

  17. T.L. Koch, U. Koren, Semiconductor photonic integrated circuits. IEEE J. Quant. Electron. 27, 641–653 (1991)

    ADS  Google Scholar 

  18. B.E. Little, S.T. Chu, Towards very large-scale integrated photonics. Optic. Photon. News 11, 24–29 (2000)

    ADS  Google Scholar 

  19. B. Jalali, S. Fathpour, Silicon photonics. J. Lightwave Tech. 24, 4600–4615 (2006)

    ADS  Google Scholar 

  20. M.D. Pelusi, V.G. Ta’Eed, M.R.E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, B.J. Eggleton, Ultra-high nonlinear As2S3 planar waveguide for 160 Gb/s optical time-division demultiplexing by four-wave mixing. IEEE Photon. Tech. Lett. 19, 1496–1498 (2007)

    ADS  Google Scholar 

  21. K. Wörhoff, L.T.H. Hilderink, A. Driessen, P.V. Lambeck, Silicon oxynitride. A versatile material for integrated optics applications. J. Electrochem. Soc. F149, F85–F91 (2002)

    Google Scholar 

  22. V.G. Ta’eed, N.J. Baker, L. Fu, K. Finsterbusch, M.R.E. Lamont, D.J. Moss, H.C. Nguyen, B.J. Eggleton, D.-Y. Choi, S. Madden, B. Luther-Davies, Ultrafast all-optical chalcogenide glass photonic circuits. Opt. Express 15, 9205–9221 (2007)

    ADS  Google Scholar 

  23. J.H. Lee, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, All-fiber 80-Gbit/s wavelength converter using 1-m-long bismuth oxide-based nonlinear optical fiber with a nonlinearity gamma of 1100 W−1 km−1. Opt. Express 13, 3144–3149 (2005)

    ADS  Google Scholar 

  24. A. Arie, N. Voloch, Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals. Laser Photon. Rev. 4, 355–373 (2010)

    Google Scholar 

  25. P. Russell, Photonic crystal fibers. Science 299, 358–362 (2003)

    ADS  Google Scholar 

  26. E. Yablonovitch, T.J. Gmitter, K.M. Leung, Photonic band structure: the facecentered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295–2298 (1991)

    ADS  Google Scholar 

  27. A. Gondarenko, J.S. Levy, M. Lipson, High confinement micron-scale silicon nitride high Q ring resonator. Opt. Express 17, 11366–11370 (2009)

    ADS  Google Scholar 

  28. L.M. Tong, R.R. Gattass, J.B. Ashcom, S.L. He, J.Y. Lou, M.Y. Shen, I. Maxwell, E. Mazur, Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816–819 (2003)

    ADS  Google Scholar 

  29. M.A. Foster, A.C. Turner, M. Lipson, A.L. Gaeta, Nonlinear optics in photonic nanowires. Opt. Express 16, 1300–1320 (2008)

    ADS  Google Scholar 

  30. B. E. Little, A VLSI Photonics Platform, Optical Fiber Communication Conference, (Atlanta, Georgia, Optical Society of America, 2003), 444–445

    Google Scholar 

  31. E.A.S. Bahaa, M.C. Teich, Fundamentals of Photonics (Wiley, England, 1991). ISBN ISBN 978-0471839651

    Google Scholar 

  32. R.W. Boyd, Nonlinear Optics (Academic, San Diego, CA, 2008). ISBN ISBN 978-0123694706

    Google Scholar 

  33. H. Rong, Y.-H. Kuo, A. Liu, M. Paniccia, O. Cohen, High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides. Opt. Express 14, 1182–1188 (2006)

    ADS  Google Scholar 

  34. R. Salem, M.A. Foster, A.C. Turner, D.F. Geraghty, M. Lipson, A.L. Gaeta, All-optical regeneration on a silicon chip. Opt. Express 15, 7802–7809 (2007)

    ADS  Google Scholar 

  35. P.P. Absil, J.V. Hryniewicz, B.E. Little, P.S. Cho, R.A. Wilson, L.G. Joneckis, P.-T. Ho, Wavelength conversion in GaAs micro-ring resonators. Opt. Lett. 25, 554–556 (2000)

    ADS  Google Scholar 

  36. H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, M. Paniccia, A cascaded silicon Raman laser. Nat. Photon. 2, 170–174 (2008)

    ADS  Google Scholar 

  37. M. Volatier, D. Duchesne, R. Morandotti, R. Arès, V. Aimez, Extremely high aspect ratio GaAs and GaAs/AlGaAs nanowaveguides fabricated using chlorine ICP plasma etching with N2 promoted passivation. Nanotechnology 21, 134014 (2010)

    ADS  Google Scholar 

  38. G.A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G.I. Stegeman, D.N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C.R. Stanley, M. Sorel, Enhanced third-order nonlinear effects in optical AlGaAs nanowires. Opt. Express 14, 9377–9384 (2006)

    ADS  Google Scholar 

  39. M. Borselli, T.J. Johnson, O. Painter, Measuring the role of surface chemistry in silicon microphotonics. Appl. Phys. Lett. 88, 131114 (2006)

    ADS  Google Scholar 

  40. A. Jouad, V. Aimez, Passivation of air-exposed AlGaAs using low frequency plasma-enhanced chemical vapor deposition of silicon nitride. Appl. Phys. Lett. 89, 092125 (2006)

    ADS  Google Scholar 

  41. I. Moerman, P.P. Van Daele, P.M. Demeester, A review on fabrication technologies for the monolithic integration of tapers with III–V semiconductor devices. IEEE J. Sel. Top. Quant. Electron. 3, 1308–1320 (1997)

    Google Scholar 

  42. V.R. Almeida, R.R. Panepucci, M. Lipson, Nanotaper for compact mode conversion. Opt. Lett. 28, 1302–1304 (2003)

    ADS  Google Scholar 

  43. H.K. Tsang, Y. Liu, Nonlinear optical properties of silicon waveguides. Semicond. Sci. Tech. 23, 064007 (2008)

    ADS  Google Scholar 

  44. E. Dulkeith, Y.A. Vlasov, X. Chen, N.C. Panoiu, R.M. Osgood Jr., Self-phase-modulation in submicron silicon-on-insulator photonic wires. Opt. Express 14, 5524–5534 (2006)

    ADS  Google Scholar 

  45. T.K. Liang, H.K. Tsang, Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides. Appl. Phys. Lett. 84, 2745–2747 (2004)

    ADS  Google Scholar 

  46. R.M. de Ridder, K. Worhoff, A. Driessen, P.V. Lambeck, H. Albers, Silicon oxynitride planar waveguiding structures for application in optical communication. IEEE J. Sel. Top. Quant. Electron. 4, 930–937 (1998)

    Google Scholar 

  47. W.T. Li, Y.L. Ruan, B. Luther-Davies, A. Rode, R. Boswell, Dry-etch of As2S3 thin films for optical waveguide fabrication. J. Vac. Sci. Tech. 23, 1626–1632 (2005)

    ADS  Google Scholar 

  48. Y.L. Ruan, W.T. Li, R. Jarvis, N. Madsen, A. Rode, B. Luther-Davies, Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching. Opt. Express 12, 5140–5145 (2004)

    ADS  Google Scholar 

  49. M. Shokooh-Saremi, V.G. Ta’eed, N.J. Baker, I.C.M. Littler, D.J. Moss, B.J. Eggleton, Y. Ruan, B. Luther-Davies, High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer. J. Opt. Soc. Am. B 23, 1323–1331 (2006)

    ADS  Google Scholar 

  50. H.C. Nguyen, K. Finsterbusch, D.J. Moss, B.J. Eggleton, Dispersion in nonlinear figure of merit of As2Se3 chalcogenide fibre. Electron. Lett. 42, 571–572 (2006)

    Google Scholar 

  51. D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B.E. Little, S.T. Chu, D.J. Moss, Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides. Opt. Express 17, 1865–1870 (2009)

    ADS  Google Scholar 

  52. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J.E. Sipe, S. Chu, B. Little, D.J. Moss, Low power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat. Photon. 2, 737–740 (2008)

    ADS  Google Scholar 

  53. B.E. Little, S.T. Chu, P.P. Absil, J.V. Hryniewicz, F.G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, M. Trakalo, Very high-order microring resonator filters for WDM applications. IEEE Photon. Tech. Lett. 16, 2263–2265 (2004)

    ADS  Google Scholar 

  54. A. Yalcın, K.C. Popat, J.C. Aldridge, T.A. Desai, J. Hryniewicz, N. Chbouki, B.E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M.S. Unlu, B.B. Goldberg, Optical Sensing of Biomolecules Using Microring Resonators. IEEE J. Sel. Top. Quant. Electron. 12, 148–155 (2006)

    Google Scholar 

  55. I.H. Agha, Y. Okawachi, M.A. Foster, J.E. Sharping, A.L. Gaeta, Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres. Phys. Rev. A 76, 043837 (2007)

    ADS  Google Scholar 

  56. D.H. Broaddus, M.A. Foster, I.H. Agha, J.T. Robinson, M. Lipson, A.L. Gaeta, Silicon-waveguide-coupled high-Q chalcogenide microspheres. Opt. Express 17, 5998–6003 (2009)

    ADS  Google Scholar 

  57. T.J. Kippenberg, S.M. Spillane, K.J. Vahala, Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004)

    ADS  Google Scholar 

  58. M. Soltani, Q. Li, S. Yegnanarayanan, A. Adibi, Improvement of thermal properties of ultra-high Q silicon microdisk resonators. Opt. Express 15, 17305–17312 (2007)

    ADS  Google Scholar 

  59. S. Yegnanaryanan, M. Soltani, Q. Li, E.S. Hosseini, A.A. Eftekhar, A. Adibi, Microresonator in CMOS compatible substrate. J. Nanosci. Nanotechnol. 10, 1508–1524 (2010)

    Google Scholar 

  60. K.J. Vahala, Optical microcavities. Nature 424, 839–846 (2003)

    ADS  Google Scholar 

  61. A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, Y. Arakawa, Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap. Nat. Photon. 5, 91–94 (2011)

    ADS  Google Scholar 

  62. J. Bravo-Abad, A. Rodriguez, P. Bermel, S.G. Johnson, J.D. Joannopoulos, M. Soljacic, Enhanced nonlinear optics in photonic-crystal micro-cavities. Opt. Express 15, 16161–16176 (2007)

    ADS  Google Scholar 

  63. D. Duchesne, M. Peccianti, M.R.E. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B.E. Little, D.J. Moss, Supercontinuum generation in a high index doped silica glass spiral waveguide. Opt. Express 18, 923–930 (2010)

    ADS  Google Scholar 

  64. M. Peccianti, M. Ferrera, L. Razzari, R. Morandotti, B.E. Little, S.T. Chu, D.J. Moss, Subpicosecond optical pulse compression via an integrated nonlinear chirper. Opt. Express 18, 7625–7633 (2010)

    Google Scholar 

  65. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B.E. Little, D.J. Moss, CMOS compatible integrated optical hyper-parametric oscillator. Nat. Photon. 4, 41 (2010)

    ADS  Google Scholar 

  66. J.S. Levy, A. Gondarenko, M.A. Foster, A.C. Turner-Foster, A.L. Gaeta, M. Lipson, CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photon. 4, 37–40 (2009)

    ADS  Google Scholar 

  67. M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti, P. Cheben, S. Janz, D.-X. Xu, B.E. Little, S. Chu, D.J. Moss, Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million. Opt. Express 17, 14098–14103 (2009)

    ADS  Google Scholar 

  68. S. Clemmen, K.P. Huy, W. Bogaerts, R.G. Baets, P. Emplit, S. Massar, Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators. Opt. Express 17, 16558–16570 (2009)

    ADS  Google Scholar 

  69. M. Pelton, C. Santori, G.S. Solomon, O. Benson, Y. Yamamoto, Triggered single photons and entangled photons from a quantum dot microcavity. Eur. Phys. J. D 18, 179–190 (2002)

    ADS  Google Scholar 

  70. J. Chen, Z.H. Levine, J.Y. Fan, A.L. Migdall, Frequency-bin entangled comb of photon pairs from a Silicon-on-Insulator micro-resonator. Opt. Express 19, 1470–1483 (2011)

    ADS  Google Scholar 

  71. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, Boston, MA, 1991). ISBN ISBN 978-0124709515

    Google Scholar 

  72. Q. Lin, T.J. Johnson, R. Perahia, C.P. Michael, O.J. Painter, A proposal for highly tunable optical parametric oscillation in silicon micro-resonators. Opt. Express 16, 10596–10610 (2008)

    ADS  Google Scholar 

  73. J.A. Giordmaine, R.C. Miller, Tunable coherent parametric oscillation in LiNbO3 at optical frequencies. Phys. Rev. Lett. 14, 973–976 (1965)

    ADS  Google Scholar 

  74. W. Denzer, G. Hancock, M. Islam, C.E. Langley, R. Peverall, G.A.D. Ritchie, D. Taylor, Trace species detection in the near infrared using Fourier transform broadband cavity enhanced absorption spectroscopy: initial studies on potential breath analytes. Analyst 136, 801–806 (2011)

    ADS  Google Scholar 

  75. D.-I. Yeom, E.C. Mägi, M.R.E. Lamont, M.A.F. Roelens, L. Fu, B.J. Eggleton, Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. Opt. Lett. 33, 660–662 (2008)

    ADS  Google Scholar 

  76. J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006)

    ADS  Google Scholar 

  77. S. Radic, C.J. McKinstrie, A.R. Chraplyvy, G. Raybon, J.C. Centanni, C.G. Jorgensen, K. Brar, C. Headley, Continuous-wave parametric gain synthesis using nondegenerate pump four-wave mixing. IEEE Photon. Tech. Lett. 14, 1406–1408 (2002)

    ADS  Google Scholar 

  78. M.R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, B.J. Eggleton, Net-gain from aparametric amplifier on a chalcogenide optical chip. Opt. Express 16, 20374–20381 (2008)

    ADS  Google Scholar 

  79. M.A. Foster, A.C. Turner, J.E. Sharping, B.S. Schmidt, M. Lipson, A.L. Gaeta, Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006)

    ADS  Google Scholar 

  80. A. Pasquazi, Y. Park, J. Azaña, F. Légaré, R. Morandotti, B.E. Little, S.T. Chu, D.J. Moss, Efficient wavelength conversion and net parametric gain via Four Wave Mixing in a high index doped silica waveguide. Opt. Express 18, 7634–7641 (2010)

    Google Scholar 

  81. A. Pasquazi, Y. Park, S.T. Chu, B.E. Little, F. Légaré, R. Morandotti, J. Azaña, D.J. Moss, Time lens measurement of subpicosecond optical pulses in CMOS compatible high index glass waveguides. IEEE J. Sel. Top. Quant. Electron. PP(99), 1–8 (2011)

    Google Scholar 

  82. B.H. Kolner, M. Nazarathy, Temporal imaging with a time lens. Opt. Lett. 14, 630–632 (1989)

    ADS  Google Scholar 

  83. B.H. Kolner, Generalization of the concepts of focal length and f-number to space and time. J. Opt. Soc. Am. A 11, 3229–3234 (1994)

    MathSciNet  ADS  Google Scholar 

  84. J. Azana, N.K. Berger, B. Levit, B. Fischer, Spectral Fraunhofer regime: time-to-frequency conversion by the action of a single time lens on an optical pulse. Appl. Opt. 43, 483–490 (2004)

    ADS  Google Scholar 

  85. L.Kh. Mouradian, F. Louradour, V. Messager, A. Barthelemy, C. Froehly, Spectro-temporal imaging of femtosecond events. IEEE J. Quant. Electron. 36, 795–801 (2000)

    ADS  Google Scholar 

  86. M.T. Kauffman, W.C. Banyai, A.A. Godil, D.M. Bloom, Time-to-frequency converter for measuring picosecond optical pulses. Appl. Phys. Lett. 64, 270–272 (1994)

    ADS  Google Scholar 

  87. C.V. Bennett, R.P. Scott, B.H. Kolner, Temporal magnification and reversal of 100 Gb/s optical-data with an up-conversion time microscope. Appl. Phys. Lett. 65, 2513–2515 (1994)

    ADS  Google Scholar 

  88. C.V. Bennett, B.H. Kolner, Principles of parametric temporal imaging. I. System configurations. IEEE J. Quant. Electron. 36, 430–437 (2000)

    ADS  Google Scholar 

  89. M.A. Foster, R. Salem, D.F. Geraghty, A.C. Turner-Foster, M. Lipson, A.L. Gaeta, Silicon-chip-based ultrafast optical oscilloscope. Nature 456, 81–84 (2008)

    ADS  Google Scholar 

  90. M.A. Foster, R. Salem, Y. Okawachi, A.C. Turner-Foster, M. Lipson, A.L. Gaeta, Ultrafast waveform compression using a time-domain telescope. Nat. Photon. 3, 581–585 (2009)

    ADS  Google Scholar 

  91. R. Salem, M.A. Foster, A.C. Turner-Foster, D.F. Geraghty, M. Lipson, A.L. Gaeta, Optical time lens based on four-wave mixing on a silicon chip. Opt. Lett. 33, 1047–1049 (2008)

    ADS  Google Scholar 

  92. H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw Hill, New York, NY, 1989). ISBN ISBN 978-0070460928

    Google Scholar 

  93. W.J. Tomlinson, R.H. Stolen, C.V. Shank, Compression of optical pulses chirped by self-phase modulation in fibers. J. Opt. Soc. Am. B 1, 139 (1984)

    ADS  Google Scholar 

  94. K. Ogata, Modern Control Engineering, 5th edn. (Prentice Hall, New Jersey, 2001). ISBN ISBN 978-0136156734

    Google Scholar 

  95. G.F. Simmons, Differential Equations with Applications and Historical Notes, 2nd edn. (McGraw-Hill, New York, NY, 1991). ISBN ISBN 978-0070575400

    Google Scholar 

  96. J. Azaña, Proposal of a uniform fiber Bragg grating as an ultrafast all-optical integrator. Opt. Lett. 33, 4–6 (2008)

    ADS  Google Scholar 

  97. R. Slavik, Y. Park, M. Kulishov, R. Morandotti, J. Azaña, Ultrafast all-optical differentiators. Opt. Express 14, 10699–10707 (2006)

    ADS  Google Scholar 

  98. Y. Park, J. Azaña, R. Slavik, Ultra-fast all-optical first and higher-order differentiators based on interferometers. Opt. Lett. 32, 710–712 (2007)

    ADS  Google Scholar 

  99. Y. Park, T.-J. Ahn, Y. Dai, J. Yao, J. Azaña, All-optical temporal integration of ultra-fast pulse waveforms. Opt. Express 16, 17817–17825 (2008)

    ADS  Google Scholar 

  100. N.Q. Ngo, Design for an optical temporal integrator based on a phase shifted fiber Bragg grating in transmission. Opt. Lett. 32, 3020–3022 (2007)

    ADS  Google Scholar 

  101. C.K. Madsen, J.H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, New York, NY, 1999). ISBN ISBN 978-0471183730

    Google Scholar 

  102. M.T. Hill, H.J.S. Dorren, T. de Vries, X.J.M. Leijtens, J.H. den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, M.K. Smit, A fast low-power optical memory based on coupled micro-ring lasers. Nature 432, 206–209 (2004)

    ADS  Google Scholar 

  103. N.Q. Ngo, L.N. Binh, Optical realization of Newton-Cotes-based integrators for dark soliton generation. J. Lightwave Tech. 24, 563–572 (2006)

    ADS  Google Scholar 

  104. C.-W. Hsue, L.-C. Tsai, Y.-H. Tsai, Time-constant control of microwave integrators using transmission lines. IEEE Trans. Microw. Theor. Tech. 54, 1043–1047 (2006)

    ADS  Google Scholar 

  105. X. Ding, X. Zhang, X. Zhang, D. Huang, Active micro-ring optical integrator associated with electro-absorption modulators for high speed low light power loadable and erasable optical memory unit. Opt. Express 17, 12835–12848 (2009)

    ADS  Google Scholar 

  106. M. Ferrera, Y.-W. Park, L. Razzari, B.E. Little, S.T. Chu, R. Morandotti, D.J. Moss, J. Azaña, On-chip CMOS-compatible all-optical integrator. Nat. Commun. 1, 29 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Ferrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ferrera, M. et al. (2012). Advanced Integrated Photonics in Doped Silica Glass. In: Chen, Z., Morandotti, R. (eds) Nonlinear Photonics and Novel Optical Phenomena. Springer Series in Optical Sciences, vol 170. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3538-9_2

Download citation

Publish with us

Policies and ethics