Skip to main content

Comparative Evolution and Design in Non-vertebrate Cardiovascular Systems

  • Chapter
  • First Online:
Ontogeny and Phylogeny of the Vertebrate Heart

Abstract

The majority of invertebrate and all vertebrate hearts originate as simple tubular structures organised on a segmental plan. During both evolution and development a heart must increase in power and efficiency in order to serve the transport requirements of increasingly complex and extensive tissue networks. Similarly in both development and evolution body plans become more specialised, e.g. gas exchange and nutrient uptake surfaces become regionalised and highly specialised, requiring modification of the cardiovascular system to supply tissues effectively. These factors are equally pertinent to both vertebrates and invertebrates, and both have developed highly effective systems. Key differences in the evolution of body plans between phyla have, however, necessitated major anatomical differences in the manner in which vertebrate and invertebrate hearts have responded to the challenge. This chapter focuses on non-vertebrate animals and discusses evolutionary and developmental modification of vascular systems focusing on: “hearts”; the pericardium; “open” vs. “closed” vascular systems; myogenic and neurogenic excitation mechanisms; regional specialisation, including gas exchange structures; auxiliary pumps; effects of body size and modifications for terrestrial life. The much greater diversity of the invertebrate phyla dictates that examples must be largely restricted to arthropods. Finally the chapter stresses the overall similarities between invertebrate and vertebrate cardiovascular systems

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamczewska A, Morris S (2001) Metabolic status and respiratory physiology of Gecarcoidea natalis, the Christmas Island Red Crab, during the annual breeding migration. Biol Bull 200:321–335

    Article  Google Scholar 

  • Adamowicz SJ, Purvis A, Wills MA (2008) Increasing morphological complexity in multiple parallel lineages of the Crustacea. Proc Natl Acad Sci USA 105:4786–4791

    Google Scholar 

  • Airriess CN, McMahon BR (1992) Aminergic modulation of circulatory performance in the crab Cancer magister. In Hill RB, Kuwasawa K, McMahon BR, Kuramoto T (eds) Comparative physiology, vol 11, Phylogenetic models in functional coupling of the CNS and the cardiovascular system. Karger, Basel, pp 123–131

    Google Scholar 

  • Airriess CN, McMahon BR (1994) Cardiovascular adaptations enhance tolerance of environmental hypoxia in the crab Cancer magister. J Exp Biol 190:23–41

    PubMed  Google Scholar 

  • Airriess CN, McMahon BR (1996) Short-term emersion affects cardiac function and regional hemolymph distribution in the crab Cancer magister. J Exp Biol 199:569–578

    PubMed  Google Scholar 

  • Alexandrowicz JS (1932) The innervations of the heart of Crustacea 1. Decapods. Q J Microsc 75:181–249

    Google Scholar 

  • Ando H, Kuwasawa K (2004) Neuronal and neurohormonal control of the heart in the stomatopod crustacean, Squilla oratoria. J Exp Biol 207:4663–4677

    Article  PubMed  CAS  Google Scholar 

  • Bassham S, Cañestro C, Postlethwait JH (2008) Evolution of developmental roles of Pax2/5/8 paralogs after independent duplication in urochordate and vertebrate lineages. BMC Biol 6:35

    Google Scholar 

  • Brand AR (1972) The mechanism of blood circulation in Anodonta anatine L. (Bivalvia Unionidae). J Exp Biol 56(362):379

    Google Scholar 

  • Burggren WW, McMahon BR (1988) Circulation. In: Biology of the land crabs, Chap 1. Cambridge University Press, Cambridge

    Google Scholar 

  • Burggren WW, Reiber CL (2007) Evolution of cardiovascular systems. In: Aird WC (ed) Endothelial biomedicine. Cambridge University Press, Cambridge, pp 29–49

    Chapter  Google Scholar 

  • Burggren WW, Farrell A, Lillywhite H (1997) Vertebrate cardiovascular systems. In: Danzler WH (ed) Handbook of physiology, Sect 13. Comparative physiology, vol 1. Oxford University Press, Oxford, pp 215–308

    Google Scholar 

  • Christie AE, Stevens JS, Bowers MR et al (2010) Identification of a calcitonin-like diuretic hormone that functions as an intrinsic modulator of the American lobster, Homarus americanus, cardiac neuromuscular system. J Exp Biol 213:118–127

    Article  PubMed  CAS  Google Scholar 

  • Cooke IM (1988) Studies on the crustacean cardiac ganglion. Comp Biochem Physiol 91C: 205–218

    Google Scholar 

  • Cooke IM (2002) Reliable, responsive pacemaking and pattern generation with minimal cell numbers: the crustacean cardiac ganglion. Biol Bull 202:108–136

    Article  PubMed  Google Scholar 

  • De Robertis EM (1997) Evolutionary biology: the ancestry of segmentation. Nature 387:25–26

    Google Scholar 

  • De Robertis EM (2008) Evo-devo: variations on ancestral themes. Cell 132:185–195. doi:10.1016/j.cell.2008.01.003

    Article  PubMed  Google Scholar 

  • Defur PL, McMahon BR, Booth CE (1983) Analysis of hemolymph oxygen levels and acid-base status during emersion ‘insitu’ in the red rock crab, Cancer productus. Biol Bull 165:582–590

    Google Scholar 

  • Dewachter B, McMahon BR (1996) Haemolymph flow distribution, cardiac performance and ventilation in Cancer magister (Decapoda, Crustacea) during moderate activity. J Exp Biol 199:627–633

    Google Scholar 

  • Dewachter B, Wilkens JL (1996) Comparison of temperature effects on heart performance of the dungeness crab, Cancer magister, in vitro and in viva. Biol Bull 190:385–395

    Article  Google Scholar 

  • Eckert R, Randall D, Burggren WW, French K (1997) Animal physiology, 4th edn. Freeman, New York, 479

    Google Scholar 

  • Farrell AP, Farrell ND, Jourdan H, Cox G (2012) A perspective on the evolution of the coronary circulation in fishes and the transition to terrestrial life. In: Sedmera D, Wang T (eds) Ontogeny and phylogeny of the vertebrate heart. Springer, New York

    Google Scholar 

  • Farrelly CA, Greenaway P (1993) Land crabs with smooth lungs: Grapsidae, Gecarcinidae, and Sundathelphusidae: ultrastructure and vasculature. J Morphol 215:245–260

    Article  Google Scholar 

  • Farrelly CA, Greenaway P (1994) Gas exchange in air-breathing crabs: lungs versus gills. J Exp Biol 187:113–130

    PubMed  Google Scholar 

  • Farrelly CA, Greenaway P (2005) The morphology and vasculature of the respiratory organs of terrestrial hermit crabs (Coenobita and Birgus): gills, branchiostegal lungs and abdominal lungs. Arthropod Struct Dev 34:65–89

    Article  Google Scholar 

  • Forouhar AS, Liebling M, Hickerson A, Nasiraei-Moghaddam A, Tsai HJ, Hove JR, Fraser SE, Dickinson M, Gharib M (2006) The embryonic vertebrate heart tube is a dynamic suction pump. Science 312:751–753

    Article  PubMed  CAS  Google Scholar 

  • Greenaway P, Farrelly CA (1984) The venous system of the terrestrial crab Ocypode cordimanus (Desmarest 1825) with particular relevance to the vasculature of the lungs. J Morphol 181:133–142

    Article  Google Scholar 

  • Greenaway P, Farrelly CA (1990) Vasculature of the gas exchange organs in air breathing brachyurans. Physiol Zool 63:117–139

    Google Scholar 

  • Greenaway P, Morris S, McMahon BR (1988) Adaptations to a terrestrial existence by the Robber Crab Birgus latro. II. In Vivo respiratory gas exchange and transport. J Exp Biol 140:493–509

    Google Scholar 

  • Guadagnoli JA, Jones LA, Reiber CL (2005) The influence of reproductive state on cardiac parameters and hypoxia tolerance in the Grass Shrimp, Palaemonetes pugio. Funct Ecol 19:976–981

    Article  Google Scholar 

  • Guadagnoli JA, Tobita K, Reiber CL (2007) Assessment of the pressure–volume relationship of the single ventricle of the grass shrimp, Palaemonetes pugio. J Exp Biol 210:2192–2198

    Article  PubMed  CAS  Google Scholar 

  • Guirguis MS, Wilkens JL (1995) The role of the cardioregulatory nerves in mediating heart rate responses to locomotion, reduced stroke volume and neurohormones in Homarus americanus. Biol Bull 188:179–185

    Article  Google Scholar 

  • Harper SL, Reiber CL (2001) Ontogeny of neurohormonal regulation of the cardiovascular system in the crayfish Procambarus clarkii. J Comp Physiol 7B:577–583

    Google Scholar 

  • Harper SL, Reiber CL (2004) Physiological development of the embryonic and larval crayfish heart. Biol Bull 206(2):78–86

    Article  PubMed  CAS  Google Scholar 

  • Hertel W, Pass G (2002) An evolutionary treatment of the morphology and physiology of circulatory organs in insects. Comp Biochem Physiol 133A:555–575

    CAS  Google Scholar 

  • Hertel W, Wirkner CS, Pass G (2002) Studies on the cardiac physiology of Onychophora and Chilopoda. Comp Biochem Physiol 133A:605–609

    Google Scholar 

  • Innes AJ, Taylor E (1986) The evolution of air-breathing in crustaceans: a functional analysis of branchial, cutaneous and pulmonary gas exchange. Comp Biochem Physiol 85A:621–637

    Article  Google Scholar 

  • Ishii Y, Yamagishi H (2002) Cardiac pacemaker mechanisms in the ostracod crustacean Vargula hilgendorfii. Comp Biochem Physiol 133A:589–594

    CAS  Google Scholar 

  • Kirara A, Kuasawa K (1984) A neuroanatomical and electrophysiological analysis of nervous regulation in the heart of an isopod crustacean Bathyonomus doerderleini. J Comp Physiol 154A:88–94

    Google Scholar 

  • Kuramoto T, Ebara A (1984) Neurohormonal modulation of the cardiac outflow through the cardioarterial valve in the lobster. J Exp Biol 11:123–130

    Google Scholar 

  • Lankester ER (1873) On the primitive cell-layers of the embryo as the basis of genealogical classification of animals, and on the origin of vascular and lymph systems. Ann Mag Nat Hist 11(4):321–338

    Google Scholar 

  • Lankester ER (1887) Note on the coelom and vascular system of Mollusca and Arthropoda. Nature 37:498

    Google Scholar 

  • Mayrat A, McMahon BR, Tanaka K (2006) The circulatory system. In: Treatise on zoology—anatomy, taxonomy, biology—The Crustacea. Revised and updated from the Traite de Zoologie 2:3–84

    Google Scholar 

  • McGaw IJ, McMahon BR (1996) Cardiovascular responses resulting from variation in external salinity in the Dungeness Crab Cancer magister. Physiol Zool 69:1384–1401

    Google Scholar 

  • McGaw IJ (2005) The decapod crustacean circulatory system: a case that is neither open nor closed. Microsc Microanal 11:18–36

    Article  PubMed  CAS  Google Scholar 

  • McGaw IJ, Airriess CN, McMahon BR (1994) Peptidergic modulation of cardiovascular dynamics in the Dungeness crab Cancer magister. J Comp Physiol 164B:103–111

    Google Scholar 

  • McGaw IJ, Stillman JH (2010) Cardiovascular system of the Majidae (Crustacea: Decapoda). Arthropod Struct Dev 39:340–349

    Google Scholar 

  • McGaw IJ, Wilkens JL, McMahon BR (1995) Crustacean cardio-excitatory peptides may be inhibitory in vivo. J Exp Biol 204:923–932

    Google Scholar 

  • McLaughlin PA (1983) Internal anatomy, Chap 1. In: Mantel L (ed) Internal anatomy and physiological regulation, vol 5. In: Bliss DE (Series ed) Biology of Crustacea. Academic Press, New York, pp 1–54

    Google Scholar 

  • McMahon BR, Butler PJ, Taylor EW (1978) Changes in pH and carbon dioxide levels during recovery from disturbance and during long term exposure to hypoxia in the lobster Homarus vulgaris. J Exptl Zool 205(3):361–370

    Google Scholar 

  • McMahon BR, Wilkens JL (1983) Ventilation perfusion and oxygen uptake. In: Mantel L (ed) vol 5. Bliss D (Series ed) The biology of Crustacea. Academic Press, New York, pp 289–372

    Google Scholar 

  • McMahon BR, Burnett L (1990) The crustacean open circulatory system: a re-examination. Physiol Zool 63:35–71

    Google Scholar 

  • McMahon BR, Hankinson JJ (1993) Respiratory adaptations in burrowing crayfish. Freshw Crayfish 9:174–182

    Google Scholar 

  • McMahon BR (1992) Factors controlling the distribution of cardiac output in crustaceans. In Hill RB, Kuwasawa K, McMahon BR, Kuramoto T (eds) Comparative physiology, vol 11. Phylogenetic models in functional coupling of the CNS and the cardiovascular system. Karger, Basel, pp 51–61

    Google Scholar 

  • McMahon BR (1995) Integrated neural and neurohormonal control of respiratory and circulatory function in crustaceans: is their evidence for an “autonomic” control system. Verb Deustch Zool Ges 88:87–101

    Google Scholar 

  • McMahon BR, Chu KH, Mak EMT (1995a) Development of the heart in the Shrimp Metapenaeus ensis. Fish Shell Fish Culture Symp 34:470–473

    Google Scholar 

  • McMahon BR, Smith PJS, Wilkens JL (1997) Invertebrate circulatory systems. In: Danzler WH (ed) Handbook of physiology, comparative physiology, Sect 13. American Physiological Society, New York, pp 931–1008

    Google Scholar 

  • McMahon BR (2001) Control of cardiovascular function and its evolution in Crustacea. J Exp Biol 204:923–932

    PubMed  CAS  Google Scholar 

  • McMahon BR, Tanaka K, Doyle JE, Chu KH (2002) A change of heart: cardiovascular development n the shrimp Metapenaeus ensis. Comp Biochem Physiol 133A:577–587

    CAS  Google Scholar 

  • McMahon BR, Chu KH, Tanaka K, Doyle JE, Mak E, Yu C, Nelson M (2008). Functional development of the vascular system in larval shrimp Metapenaeus ensis. In: Abstracts of Proceedings of the Society for Experimental Biology, Barcelona

    Google Scholar 

  • Moorman AF, Christoffels VM (2003) Cardiac chamber formation: development, genes, and evolution. Physiol Rev 83:1223–1267

    PubMed  CAS  Google Scholar 

  • Morris S, Greenaway P, McMahon BR (1988) Adaptations to a terrestrial existence by the Robber Crab Birgus latro. I. An in vitro investigation of haemolymph gas transport. J Exp Biol 140:477–491

    Google Scholar 

  • Morris S, McMahon BR (1989) Neurohumor effects on crustacean haemocyanin oxygen affinity. J Exp Zool 249:334–337

    Article  CAS  Google Scholar 

  • Morris S (2005) Respiratory and acid–base responses during migration and to exercise by the terrestrial crab Discoplax (Cardisoma) hirtipes, with regard to season, humidity and behaviour. J Exp Biol 208:4333–4343

    Google Scholar 

  • Nylund A, Tjonneland A (1989) Crustacean heart ultrastructure and its phylogenetic implications, with special reference to the position of the isopods within the eumalacostracan phylogeny. Monitore Zoologico Italiano Monogr Suppl 4:29–42

    Google Scholar 

  • Økland S, Tjønneland A, Larsen L, Nylund A (1982) Heart ultrastructure in Branchinecta paludosa, Artemia salina, Branchipus schaefferi, and Streptocephalus sp. (Crustacea, Anostraca). Zoomorphology 101:71–81

    Article  Google Scholar 

  • Olsen EN (2006) Gene regulatory networks in the evolution and development of the heart. Science 29(313):1922–1927

    Article  Google Scholar 

  • Pass G (1998) Accessory pulsatile organs: microscopic anatomy of invertebrates, vol 11B: Insecta. Wiley-Liss, New York, pp 621–640

    Google Scholar 

  • Pass G (2000) Accessory pulsatile organs: evolutionary innovations in insects. Annu Rev Entomol 45:495–518

    Article  PubMed  CAS  Google Scholar 

  • Paul RJ, Zahler S, Werner R (1991) Adaptation of an open circulatory system to the oxidative capacity of different muscle types. Naturwissenshaften 78:134–135

    Article  Google Scholar 

  • Paul RJ, Bihlmayer S, Colmorgen M, Zahler S (1994) The open circulatory system of spiders (Eurypelma californicum, Pholcus phalangioides): a survey of functional morphology and physiology. Physiol Zool 67(6):1360–1382

    Google Scholar 

  • Rahr H (1981) The ultrastructure of the blood vessels of Branchiostoma lanceolatum (Pallas) (Cephalochordata). Zoomorphology 97:53–74

    Article  Google Scholar 

  • Randall DJ, Davy PS (1980) The hearts of urochordates and cephalochordates. In: Bourne GH (ed) Hearts and heart-like organs, vol 1. Comparative anatomy and development. Academic Press, New York, pp 41–59

    Google Scholar 

  • Redmond JR, Jorgenson DD, Bourne GB (1982) Circulatory physiology of Limulus. In: Bonaventura JC (ed) Physiology and biology of horseshoe crabs: studies on normal and environmentally stressed animals. Alan Liss, New York, pp 135–146

    Google Scholar 

  • Reiber CL, McMahon BR (1998) The effects of progressive hypoxia on the crustacean circulatory system: a comparison of the freshwater crayfish Procambarus clarkii and the lobster Homarus americanus. J Comp Physiol B 168:168–176

    Article  Google Scholar 

  • Reiber CL, Harper SL (2001) Perspectives on cardiac physiological ontogeny in crustaceans. Zoology (Jena) 104:103–113

    Google Scholar 

  • Reiber CL, McGaw IJ (2009) A review of the “open” and “closed” circulatory systems: new terminology for complex invertebrate circulatory systems in light of current findings. Int J Zool Suppl 1:1–8 (Article ID 301284)

    Google Scholar 

  • Ruppert E (1997) Cephalochordates, in Microscopic Anatomy of Invertebrates Hemichordata, Chaetognatha and the invertebrate chordates. New York Wiley Liss 15:349–504

    Google Scholar 

  • Ruppert EE, Carle KJ (1983) Morphology of metazoan circulatory systems. Zoomorphology 103:193–208

    Article  Google Scholar 

  • Sakurai A, Yamagishi H (1998a) Identification of two cardioacceleratory neurons in the isopod crustacean Ligia exotica and their synaptic effects on cardiac ganglion cells. J Comp Physiol 182A:145–152

    Google Scholar 

  • Sakurai A, Yamagishi H (1998b) Cardioacceleratory neurons in the isopod crustacean Ligia exotica: visualization of peripheral projection onto the heart muscle. Zool Sci 15:19–25

    Google Scholar 

  • Sakurai A, Wilkens JL (2003) Tension sensitivity of the heart pacemaker neurons in the isopod crustacean Ligia pallasii. J Exp Biol 206:105–115

    Google Scholar 

  • Sanger JW, McCann FV (1968) Observations on the ultrastructure of the myocardium of the moth Hyalophora cecropia. J Insect Physiol 14(8):1105–1106

    Google Scholar 

  • Saudemont A, Dray N, Hudry B, Le Gouar M, Vervoort M, Balavoine G (2008) Complementary striped expression patterns of NK homeobox genes during segment formation in the annelid Platynereis. Dev Biol 317:430–443

    Article  PubMed  CAS  Google Scholar 

  • Sedmera D, Ostadal B (2012) Ontogenesis of myocardial function. In: Sedmera D, Wang T (eds) Ontogeny and phylogeny of the vertebrate heart. Springer, New York

    Chapter  Google Scholar 

  • Shadwick RE, Pollock CM, Striker SA (1990) Structure and biomechanical pathways of the crustacean blood vessels. Physiol Zool 63:90–101

    Google Scholar 

  • Shigei T, Tsuru H, Ishikawa N, Yoshioka (2001) Absence of endothelium in invertebrate blood vessels: significance of endothelium and sympathetic nerve/medial smooth muscle in the vertebrate vascular system. Jpn J Pharmacol 87:253–260

    Article  PubMed  CAS  Google Scholar 

  • Slama K (2010) Physiology of heartbeat reversal in adult Drosophila melanogaster (Diptera: Drosophilidae). Eur J Entomol 107(1):13–31

    Google Scholar 

  • Spicer JI (1994) Ontogeny of cardiac function in the brine shrimp Artemia franciscana Kellogg 1906 (Branchiopoda: Anostraca). J Exp Zool 270:508–516

    Article  PubMed  CAS  Google Scholar 

  • Spicer JI (2006) Gut reaction by heartless shrimps: experimental evidence for the role of the gut in generating circulation before cardiac ontogeny. Biol Lett 22:580–582

    Article  Google Scholar 

  • Tanaka K, Kuwasawa K (1991) Central outputs for extrinsic control of the heart in an isopod crustacean Bathynomus doederleini Neuroanatomy and electrophysiology. Comp Biochem Physiol 98C:79–86

    Google Scholar 

  • Tanaka K, Kuwasawa K (1990) Bradycardia and tachycardia induced by extrinsic cardiac nerves in an isopod Bathynomus doederleini. Wiese K, Krenz K-D, Tautz J, Riechert H, Mulloney B, Editors In Frontiers in Crustacean Neurobiology Basel: Birkhauser 492–497

    Google Scholar 

  • Taylor HH, Greenaway P (1984) The role of the gills and branchiostegites in gas exchange in a bimodally breathing crab, Holthuisana transversa Von Martens. Evidence for a facultative change in the distribution of the respiratory circulation. J Exp Biol 111:103–121

    Google Scholar 

  • Taylor HH, Taylor E (1986) Observations of valve-like structures and evidence for rectification of flow within the gill lamellae of the crab Carcinus maenas (Crustacea, Decapoda). Zoomorphology (Berlin) 106:1–11

    Google Scholar 

  • Volk EL (1988). The role of suspensory ligaments in modifying cardiac output in crustaceans. MSc Dissertation, The University of Calgary

    Google Scholar 

  • Wheatly MG, McMahon BR, Burggren WW, Pinder AW (1986) Haemolymph acid-base, electrolyte and gas status during sustained voluntary activity in the land hermit crab (Coenobita compressus). J Exp Biol 125:225–243

    Google Scholar 

  • Wilkens JL, McMahon BR (1992) Intrinsic properties and extrinsic neurohormonal control of crab hemodynamics. Experientia 48:827–834

    Article  CAS  Google Scholar 

  • Wilkens JL, Walker RL (1992) Nervous control of crayfish hemodynamics. In: Hill RB, Kuwasawa K, McMahon BR, Kuramoto T (eds). Phylogenetic models in functional coupling of the CNS and the cardiovascular system. Comprehensive Physiology, vol 11. Karger, Basel, pp 115–122

    Google Scholar 

  • Wilkens JL (1993) Re-evaluation of the stretch sensitivity hypothesis of crustacean hearts: hypoxia, not lack of stretch, causes reduction in heart rate of isolated hearts. J Exp Biol 176:223–232

    Google Scholar 

  • Wilkens JL, Kuramoto T, McMahon BR (1996) The effects of six pericardial hormones and hypoxia on the semi-isolated heart and sternal artery of the lobster Homarus americanus. Comp Biochem Physiol C114:57–65

    Google Scholar 

  • Wilkens JL (1997) Possible mechanisms of control of vascular resistance in the lobster Homarus americanus. J Exp Biol 200:487–493

    PubMed  Google Scholar 

  • Wilkens JL (1999) Evolution of the cardiovascular system of Crustacea. Am Zool 39:199–204

    Google Scholar 

  • Wilkens JL, Taylor HH (2003) The control of vascular resistance in the southern rock lobster, Jasus edwardsii (Decapoda: Palinuridae). Comp Biochem Physiol 135A:369–376

    CAS  Google Scholar 

  • Wilkens JL, Cavey MJ, Shovkivska I, Zhang ML, Ter Kuers H (2008) Elasticity, unexpected contractility and the identification of actin and myosin in lobster arteries. J Exp Biol 211:766–772

    Article  PubMed  CAS  Google Scholar 

  • Windsor-Watson H III, Groome JR (1989) Modulation of the Limulus heart. Am Zool 29:1287–1303

    Google Scholar 

  • Wirkner CS (2009) The circulatory system in Malacostraca—evaluating character evolution on the basis of differing phylogenetic hypotheses. Arthrop Syst Phyl 67:57–70

    Google Scholar 

  • Wirkner CS, Pass G (2002) The circulatory system in Chilopoda: evolutionary and phylogenetic aspects. Acta Zool 83:197–202

    Article  Google Scholar 

  • Wirkner CS, Prendini L (2007) Comparative morphology of the hemolymph vascular system in scorpions–a survey using corrosion casting, MicroCT, and 3D-reconstruction. J Morphol 268(5):401–13

    Article  PubMed  Google Scholar 

  • Wirkner CS, Richter S (2010) Evolutionary morphology of the circulatory system in Peracarida (Malacostraca; Crustacea). Cladistics 26:143–167. doi:10.1111/j.1096-0031.2009.00278.x

    Article  Google Scholar 

  • Wong LYE, Moorman AF, Barnett P (2012) Basic cardiac development: the heart and its electrical components. In: Sedmera D, Wang T (eds) Ontogeny and phylogeny of the vertebrate heart. Springer, New York

    Google Scholar 

  • Worden MK, Clark CM, Conaway M, Qadri AM (2006) Temperature dependence of cardiac performance in the lobster Homarus americanus. J Exp Biol 209:1024–1034

    Article  PubMed  Google Scholar 

  • Xavier-Neto J, Castro RA, Sampaio AC, Azambuja AP, Castillo HA, Cravo RM, Simoes-Costa MS (2007) Parallel avenues in the evolution of hearts and pumping organs Cell. Mol Life Sci 64:719–734

    Article  CAS  Google Scholar 

  • Yamagishi H, Euichi H (1997) Transfer of the heart pacemaker during juvenile development in the isopod crustacean Ligia exotica. J Exp Biol 200:2393–2404

    PubMed  CAS  Google Scholar 

  • Yamagishi H, Ando H, Makioka T (1997) Myogenic heartbeats in the primitive crustacean Triops longicaudatus. Biol Bull 193:350–358

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. R. McMahon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McMahon, B.R. (2012). Comparative Evolution and Design in Non-vertebrate Cardiovascular Systems. In: Sedmera, D., Wang, T. (eds) Ontogeny and Phylogeny of the Vertebrate Heart. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3387-3_1

Download citation

Publish with us

Policies and ethics