Skip to main content

Fischer–Tropsch Hydrocarbons Synthesis from a Simulated Biosyngas

  • Chapter
  • First Online:
Advanced Biofuels and Bioproducts
  • 6248 Accesses

Abstract

The gasification of biomass followed by a Fischer–Tropsch Synthesis (FTS) is a good alternative for synthesis of gasoline and/or diesel. However, this process may be considered as a high-cost technology, depending on crude oil and biomass raw material prices. The viability may be increased depending on the value of biomass, cost of transportation of biomass and the separation (conditioning) of gases produced in the gasification (elimination of CO2, CH4, N2 and others). Nevertheless, this gas mixture “called biosyngas” may be used in the FTS without pre-conditioned for producing gasoline and/or diesel. The main focus of this chapter will be on the latest investigations in the FTS carried out in a microreactor from a simulated biosyngas (without conditioning), as an alternative to decrease the cost of this process. This chapter reports results of catalytic activity and characterization of Fe/SiO2 and Co/SiO2 catalysts and Cu, Re, Ru and Zn promoted Co/SiO2 catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Demirbas A (2007) Progress and recent trends in biofuels. Prog Energy Combus Sci 33:1–18

    Article  CAS  Google Scholar 

  2. Tijmensen MJA, Faaij APC, Hamelinck CN, van Hardeveld MRM (2002) Exploration of the possibilities for production of Fischer–Tropsch liquids and power via biomass gasification. Biomass Bioenergy 23:129–152

    Article  CAS  Google Scholar 

  3. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts and engineering. Chem Rev 106:4044–4098

    Article  CAS  Google Scholar 

  4. Prins MJ, Ptasinski KJ, Janssen FJJG (2004) Exergetic optimisation of a production process of Fischer–Tropsch fuels from biomass. Fuel Proc Technol 86:375–389

    Article  Google Scholar 

  5. Hamelinck CN, Faaij APC, den Uil H, Boerrigter H (2004) Production of FT transportation fuels from biomass; technical options, process analysis and optimization, and development potential. Energy 29:1743–1771

    Article  CAS  Google Scholar 

  6. Dry M (1981) In: Anderson JR, Boudart M (eds) Catalysis science and technology, vol I (Charter 4: The Fischer-Tropsch Synthesis). Springer, Berlin

    Google Scholar 

  7. Tomishige K, Asadullah M, Kunimori K (2004) Catalysis in the development of clean energy technologies. Catal Today 89:389–403

    Article  CAS  Google Scholar 

  8. Chaudhari ST, Bej SK, Bakhshi NN, Dalai AK (2001) Steam gasification of biomass-derived char for the production of carbon monoxide-rich synthesis gas. Energy Fuel 15:736–742

    Article  CAS  Google Scholar 

  9. Schulz H (1999) Short history and present trends of Fischer–Tropsch synthesis. Appl Catal A Gen 186:3–12

    Article  CAS  Google Scholar 

  10. Dry ME (2002) The Fischer–Tropsch process: 1950–2000. Catal Today 71:227–241

    Article  CAS  Google Scholar 

  11. Krishnamoorthy S, Li A, Iglesia E (2002) Pathways for CO2 formation and conversion during Fischer–Tropsch synthesis on iron-based catalysts. Catal Lett 80:77–86

    Article  CAS  Google Scholar 

  12. Davis BH (2009) Fischer–Tropsch synthesis: reaction mechanisms for iron catalysts. Catal Today 141:25–33

    Article  CAS  Google Scholar 

  13. Dry ME (1996) Practical and theoretical aspects of the catalytic Fischer–Tropsch process. Appl Catal A Gen 138:319–344

    Article  CAS  Google Scholar 

  14. Jun KW, Roh HS, Kim KS, Ryu JS, Lee KW (2004) Catalytic investigation for Fischer–Tropsch synthesis from bio-mass derived syngas. Appl Catal A Gen 259:221–226

    Article  CAS  Google Scholar 

  15. Escalona N, Medina C, Garcia R, Reyes P (2009) Fischer–Tropsch reaction from a mixture similar to biosyngas. Influence of promoters on surface and catalytic properties of Co/SiO2 catalysts. Catal Today 143:76–79

    Article  CAS  Google Scholar 

  16. Medina C, García R, Reyes P, Fierro JLG, Escalona N (2010) Fischer–Tropsch synthesis from a simulated biosyngas feed over Co(x)/SiO2 catalysts: effect of co-loading. Appl Catal A Gen 373: 71–75

    Article  CAS  Google Scholar 

  17. Hamelinck CN, Faaij APC, den Uil H, Boerrigter H (2004) Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential. Energy 29:1743–1771

    Article  CAS  Google Scholar 

  18. Escalona N, Fuentealba S, Pecchi G (1999) Fischer–Tropsch synthesis over LaFe1−xCoxO3 perovskites from a simulated biosyngas feed. Appl Catal A Gen 381:253–260

    Article  Google Scholar 

  19. Ubilla P, García R, Fierro JLG, Escalona N (2010) Hydrocarbons synthesis from a simulated biosyngas feed over Fe/SiO2 catalysts. J Chil Chem Soc 55:35–38

    Article  CAS  Google Scholar 

  20. Saib AM, Claeys M, van Stenn E (2002) Silica supported cobalt Fischer–Tropsch catalysts: effect of pore diameter of support. Catal Today 71:395–402

    Article  CAS  Google Scholar 

  21. Song D, Li J (2006) Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer–Tropsch catalysts. J Mol Catal A Chem 247:206–212

    Article  CAS  Google Scholar 

  22. Martinez A, Lopez C, Marquez F, Diaz IJ (2003) Fischer–Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor, and promoters. J Catal 220:486–499

    Article  CAS  Google Scholar 

  23. Hayashi H, Zhe Chen L, Tago T, Kishida M, Wakabayashi K (2002) Catalytic properties of Fe/SiO2 catalysts prepared using microemulsion for CO hydrogenation. Appl Catal A Gen 231:81–89

    Article  CAS  Google Scholar 

  24. Bukur DB, Sivaraj C (2002) Supported iron catalysts for slurry phase Fischer–Tropsch synthesis. Appl Catal A Gen 231:201–214

    Article  CAS  Google Scholar 

  25. Kuivila CS, Butt JB, Stair PC (1988) Characterization of surface species on iron synthesis catalysts by X-ray photoelectron spectroscopy. Appl Surf Sci 32:99–121

    Article  CAS  Google Scholar 

  26. Tihay F, Pourroy G, Richard-Plouet M, Roger AC, Kiennemann A (2001) Effect of Fischer–Tropsch synthesis on the microstructure of Fe–Co-based metal/spinel composite materials. Appl Catal A Gen 206:29–42

    Article  CAS  Google Scholar 

  27. Ernst B, Bensaddik A, Hilaire L, Chaumette P, Kiennemann A (1998) Study on a cobalt silica catalyst during reduction and Fischer–Tropsch reaction: in situ EXAFS compared to XPS and XRD. Catal Today 39:329–341

    Article  CAS  Google Scholar 

  28. Zhou W, Chen J, Fang K, Sun Y (2006) The deactivation of Co/SiO2 catalyst for Fischer–Tropsch synthesis at different ratios of H2 to CO. Fuel Proc Technol 87:609616

    Google Scholar 

  29. Chaudhari ST, Bej SK, Bakhshi NN, Dalai AK (2001) Steam gasification of biomass-derived char for the production of carbon monoxide-rich synthesis gas. Energy Fuel 15:736–742

    Article  CAS  Google Scholar 

  30. Khodakov AY, Griboval-Constant A, Bechara R, Zholobenko VL (2002) Pore size effects in Fischer–Tropsch synthesis over cobalt-supported mesoporous silicas. J Catal 206:230–241

    Article  CAS  Google Scholar 

  31. Dalai AK, Davis BH (2008) Fischer–Tropsch synthesis: a review of water effects on the performances of unsupported and supported co catalysts. Appl Catal A Gen 348:1–15

    Article  CAS  Google Scholar 

  32. de la Peña VA, Campos-Martin JM, Fierro JLG (2004) Strong enhancement of the Fischer–Tropsch synthesis on a Co/SiO2 catalyst activate in syngas mixture. Catal Comm 5:635–638

    Article  Google Scholar 

  33. Wan H, Wu B, Zhang C, Teng B, Tao Z, Yang Y, Zhu Y, Xiang H, Li Y (2006) Effect of Al2O3/SiO2 ratio on iron-based catalysts for Fischer–Tropsch synthesis. Fuel 85:1371–1377

    Article  CAS  Google Scholar 

  34. Borg Ø, Eri S, Blekkan EA, Storsæter S, Wigum H, Rytter E, Holmen A (2007) Fischer–Tropsch synthesis over γ-alumina-supported cobalt catalysts: effect of support variables. J Catal 248:89–100

    Article  CAS  Google Scholar 

  35. Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) Cobalt particle size effects in the Fischer−Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128:3956–3964

    Article  CAS  Google Scholar 

  36. Girardon JS, Quinet E, Griboval-Constant A, Chernavskii PA, Gengembre L, Khodakov AY (2007) Cobalt dispersion, reducibility, and surface sites in promoted silica-supported Fischer–Tropsch catalysts. J Catal 248:143–157

    Article  CAS  Google Scholar 

  37. Khodakov AY (2009) Fischer–Tropsch synthesis: relations between structure of cobalt catalysts and their catalytic performance. Catal Today 144:251–257

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CONICYT for the financial support (FONDECYT 1070548 grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Escalona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Escalona, N., García, R., Reyes, P. (2013). Fischer–Tropsch Hydrocarbons Synthesis from a Simulated Biosyngas. In: Lee, J. (eds) Advanced Biofuels and Bioproducts. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3348-4_13

Download citation

Publish with us

Policies and ethics