Skip to main content

Soft Tissue to Bone Healing in Rotator Cuff Repair

  • Chapter
  • First Online:
Structural Interfaces and Attachments in Biology
  • 1460 Accesses

Abstract

Tears of the rotator cuff tendons of from their bony insertions are an extremely important clinical problem. Although rotator cuff repair is a common shoulder procedure in the orthopaedic setting, healing of the tendons to bone after surgical repair is unpredictable, with failure rates ranging from 20 to 94%. The high failure rates are likely due to the scar-mediated process that dominates healing in the adult setting, resulting in an attachment that has significantly inferior mechanical properties compared to native tissue. In this chapter, we review the normal anatomy of the rotator cuff and its insertion site, discuss factors affecting tendon-to-bone healing, and describe surgical repair techniques. The chapter concludes with recent innovations that have been implemented to improve the strength of the repair and to biologically augment the healing process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AAOS by group. The Burden of Musculoskeletal Disease in the U.S. (2011) American Academy of Orthopedic Surgery, Rosemont, IL pp. 129–179

    Google Scholar 

  2. Reilly P, Macleod I, Macfarlane R, Windley J, Emery RJH (2006) Dead men and radiologists don’t lie: a review of cadaveric and radiological studies of rotator cuff tear prevalence. Ann R Coll Surg Engl 88:116–121

    Article  Google Scholar 

  3. Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K (2004) The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am 86-A:219–224

    Google Scholar 

  4. Boileau P, Brassart N, Watkinson DJ, Carles M, Hatzidakis AM, Krishnan SG (2005) Arthroscopic repair of full-thickness tears of the supraspinatus: does the tendon really heal? J Bone Joint Surg Am 87:1229–1240

    Article  Google Scholar 

  5. Kamath G, Galatz LM, Keener JD, Teefey S, Middleton W, Yamaguchi K (2009) Tendon integrity and functional outcome after arthroscopic repair of high-grade partial-thickness supraspinatus tears. J Bone Joint Surg Am 91:1055–1062

    Article  Google Scholar 

  6. Soslowsky LJ, Carpenter JE, Bucchieri JS, Flatow EL (1997) Biomechanics of the rotator cuff. Orthop Clin North Am 28:17–30

    Article  Google Scholar 

  7. Kumagai J, Sarkar K, Uhthoff HK, Okawara Y, Ooshima A (1994) Immunohistochemical distribution of type I II and III collagens in the rabbit supraspinatus tendon insertion. J Anat 185(pt 2):279–284

    Google Scholar 

  8. Shaw HM, Benjamin M (2007) Structure-function relationships of entheses in relation to mechanical load and exercise. Scand J Med Sci Sports 17:303–315

    Article  Google Scholar 

  9. Benjamin M, Evans EJ, Copp L (1986) The histology of tendon attachments to bone in man. J Anat 149:89–100

    Google Scholar 

  10. Thomopoulos S, Williams GR, Gimbel JA, Favata M, Soslowsky LJ (2003) Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J Orthop Res 21:413–419

    Article  Google Scholar 

  11. Galatz LM, Sandell LJ, Rothermich SY, Das R, Mastny A, Havlioglu N, Silva MJ, Thomopoulos S (2006) Characteristics of the rat supraspinatus tendon during tendon-to-bone healing after acute injury. J Orthop Res 24:541–550

    Article  Google Scholar 

  12. Thomopoulos S, Hattersley G, Rosen V, Mertens M, Galatz L, Williams GR, Soslowsky LJ (2002) The localized expression of extracellular matrix components in healing tendon insertion sites: an in situ hybridization study. J Orthop Res 20:454–463

    Article  Google Scholar 

  13. Würgler-Hauri CC, Dourte LM, Baradet TC, Williams GR, Soslowsky LJ (2007) Temporal expression of 8 growth factors in tendon-to-bone healing in a rat supraspinatus model. J Shoulder Elbow Surg 16:S198–S203

    Article  Google Scholar 

  14. Carpenter JE, Thomopoulos S, Flanagan CL, DeBano CM, Soslowsky LJ (1998) Rotator cuff defect healing: a biomechanical and histologic analysis in an animal model. J Shoulder Elbow Surg 7:599–605

    Article  Google Scholar 

  15. Edelstein L, Thomas SJ, Soslowsky LJ (2011) Rotator cuff tears: what have we learned from animal models? J Musculoskelet Neuronal Interact 11:150–162

    Google Scholar 

  16. Coleman SH, Fealy S, Ehteshami JR, Macgillivray JD, Altchek DW, Warren RF, Turner AS (2003) Chronic rotator cuff injury and repair model in sheep. J Bone Joint Surg Am 85-A:2391–2402

    Google Scholar 

  17. Derwin KA, Baker AR, Codsi MJ, Iannotti JP (2007) Assessment of the canine model of rotator cuff injury and repair. J Shoulder Elbow Surg 16:S140–S148

    Article  Google Scholar 

  18. Gerber C, Schneeberger AG, Perren SM, Nyffeler RW (1999) Experimental rotator cuff repair. A preliminary study. J Bone Joint Surg Am 81:1281–1290

    Google Scholar 

  19. Lafosse L, Brozska R, Toussaint B, Gobezie R (2007) The outcome and structural integrity of arthroscopic rotator cuff repair with use of the double-row suture anchor technique. J Bone Joint Surg Am 89:1533–1541

    Article  Google Scholar 

  20. Provencher MT, Kercher JS, Galatz LM, Elattrache NS, Frank RM, Cole BJ (2011) Evolution of rotator cuff repair techniques: are our patients really benefiting? Instr Course Lect 60:123–136

    Google Scholar 

  21. Tashjian RZ, Hollins AM, Kim H-M, Teefey SA, Middleton WD, Steger-May K, Galatz LM, Yamaguchi K (2010) Factors affecting healing rates after arthroscopic double-row rotator cuff repair. Am J Sports Med 38:2435–2442

    Article  Google Scholar 

  22. Keener JD, Wei AS, Kim HM, Paxton ES, Teefey SA, Galatz LM, Yamaguchi K (2010) Revision arthroscopic rotator cuff repair: repair integrity and clinical outcome. J Bone Joint Surg Am 92:590–598

    Article  Google Scholar 

  23. Harryman DT, Mack LA, Wang KY, Jackins SE, Richardson ML, Matsen FA (1991) Repairs of the rotator cuff. Correlation of functional results with integrity of the cuff. J Bone Joint Surg Am 73:982–989

    Google Scholar 

  24. Lichtenberg S, Liem D, Magosch P, Habermeyer P (2006) Influence of tendon healing after arthroscopic rotator cuff repair on clinical outcome using single-row Mason-Allen suture technique: a prospective, MRI controlled study. Knee Surg Sports Traumatol Arthrosc 14:1200–1206

    Article  Google Scholar 

  25. Oh JH, Kim SH, Kang JY, Oh CH, Gong HS (2010) Effect of age on functional and structural outcome after rotator cuff repair. Am J Sports Med 38:672–678

    Article  Google Scholar 

  26. Liu X, Manzano G, Kim HT, Feeley BT (2011) A rat model of massive rotator cuff tears. J Orthop Res 29:588–595

    Article  Google Scholar 

  27. Cheung S, Dillon E, Tham S-C, Feeley BT, Link TM, Steinbach L, Ma CB (2011) The presence of fatty infiltration in the infraspinatus: its relation with the condition of the supraspinatus tendon. Arthroscopy 27:463–470

    Article  Google Scholar 

  28. Zingg PO, Jost B, Sukthankar A, Buhler M, Pfirrmann CWA, Gerber C (2007) Clinical and structural outcomes of nonoperative management of massive rotator cuff tears. J Bone Joint Surg Am 89:1928–1934

    Article  Google Scholar 

  29. Kim HM, Dahiya N, Teefey SA, Keener JD, Galatz LM, Yamaguchi K (2010) Relationship of tear size and location to fatty degeneration of the rotator cuff. J Bone Joint Surg Am 92:829–839

    Article  Google Scholar 

  30. Kim HM, Galatz LM, Lim C, Havlioglu N, Thomopoulos S (2011) The effect of tear size and nerve injury on rotator cuff muscle fatty degeneration in a rodent animal model. J Shoulder Elbow Surg 61(4):613–621

    Google Scholar 

  31. Fuchs B, Gilbart MK, Hodler J, Gerber C (2006) Clinical and structural results of open repair of an isolated one-tendon tear of the rotator cuff. J Bone Joint Surg Am 88:309–316

    Article  Google Scholar 

  32. Jost B, Zumstein M, Pfirrmann CWA, Gerber C (2006) Long-term outcome after structural failure of rotator cuff repairs. J Bone Joint Surg Am 88:472–479

    Article  Google Scholar 

  33. Galatz LM, Silva MJ, Rothermich SY, Zaegel MA, Havlioglu N, Thomopoulos S (2006) Nicotine delays tendon-to-bone healing in a rat shoulder model. J Bone Joint Surg Am 88:2027–2034

    Article  Google Scholar 

  34. Baumgarten KM, Gerlach D, Galatz LM, Teefey SA, Middleton WD, Ditsios K, Yamaguchi K (2010) Cigarette smoking increases the risk for rotator cuff tears. Clin Orthop Relat Res 468:1534–1541

    Article  Google Scholar 

  35. Beason DP, Abboud JA, Kuntz AF, Bassora R, Soslowsky LJ (2011) Cumulative effects of hypercholesterolemia on tendon biomechanics in a mouse model. J Orthop Res 29:380–383

    Article  Google Scholar 

  36. Abboud JA, Kim JS (2010) The effect of hypercholesterolemia on rotator cuff disease. Clin Orthop Relat Res 468:1493–1497

    Article  Google Scholar 

  37. Cohen DB, Kawamura S, Ehteshami JR, Rodeo SA (2006) Indomethacin and celecoxib impair rotator cuff tendon-to-bone healing. Am J Sports Med 34:362–369

    Article  Google Scholar 

  38. Bedi A, Fox AJS, Harris PE, Deng X-H, Ying L, Warren RF, Rodeo SA (2010) Diabetes mellitus impairs tendon-bone healing after rotator cuff repair. J Shoulder Elbow Surg 19:978–988

    Article  Google Scholar 

  39. Chung SW, Oh JH, Gong HS, Kim JY, Kim SH (2011) Factors affecting rotator cuff healing after arthroscopic repair: osteoporosis as one of the independent risk factors. Am J Sports Med 39:2099–2107

    Article  Google Scholar 

  40. Cadet ER, Vorys GC, Rahman R, Park S-H, Gardner TR, Lee FY, Levine WN, Bigliani LU, Ahmad CS (2010) Improving bone density at the rotator cuff footprint increases supraspinatus tendon failure stress in a rat model. J Orthop Res 28:308–314

    Google Scholar 

  41. Ahmad CS, Stewart AM, Izquierdo R, Bigliani LU (2005) Tendon-bone interface motion in transosseous suture and suture anchor rotator cuff repair techniques. Am J Sports Med 33:1667–1671

    Article  Google Scholar 

  42. Pauly S, Fiebig D, Kieser B, Albrecht B, Schill A, Scheibel M (2011) Biomechanical comparison of four double-row speed-bridging rotator cuff repair techniques with or without medial or lateral row enhancement. Knee Surg Sports Traumatol Arthrosc 19:2090–2097

    Article  Google Scholar 

  43. Park MC, Elattrache NS, Tibone JE, Ahmad CS, Jun B-J, Lee TQ (2007) Part I: footprint contact characteristics for a transosseous-equivalent rotator cuff repair technique compared with a double-row repair technique. J Shoulder Elbow Surg 16:461–468

    Article  Google Scholar 

  44. Park MC, Tibone JE, Elattrache NS, Ahmad CS, Jun B-J, Lee TQ (2007) Part II: biomechanical assessment for a footprint-restoring transosseous-equivalent rotator cuff repair technique compared with a double-row repair technique. J Shoulder Elbow Surg 16:469–476

    Article  Google Scholar 

  45. Apreleva M, Özbaydar M, Fitzgibbons PG, Warner JJP (2002) Rotator cuff tears. Arthroscopy 18:519–526

    Article  Google Scholar 

  46. Millett PJ, Mazzocca A, Guanche CA (2004) Mattress double anchor footprint repair: a novel, arthroscopic rotator cuff repair technique. Arthroscopy 20:875–879

    Google Scholar 

  47. Burkhart SS, Denard PJ, Obopilwe E, Mazzocca AD (2012) Optimizing pressurized contact area in rotator cuff repair: the Diamondback repair. Arthroscopy 28(2):188–195

    Article  Google Scholar 

  48. Tuoheti Y, Itoi E, Yamamoto N, Seki N, Abe H, Minagawa H, Okada K, Shimada Y (2005) Contact area, contact pressure, and pressure patterns of the tendon-bone interface after rotator cuff repair. Am J Sports Med 33:1869–1874

    Article  Google Scholar 

  49. Mazzocca AD, Millett PJ, Guanche CA, Santangelo SA, Arciero RA (2005) Arthroscopic single-row versus double-row suture anchor rotator cuff repair. Am J Sports Med 33:1861–1868

    Article  Google Scholar 

  50. Galatz LM, Williams GR, Fenlin JM, Ramsey ML, Iannotti JP (2004) Outcome of open reduction and internal fixation of surgical neck nonunions of the humerus. J Orthop Trauma 18:63–67

    Article  Google Scholar 

  51. Duquin TR, Buyea C, Bisson LJ (2010) Which method of rotator cuff repair leads to the highest rate of structural healing? A systematic review. Am J Sports Med 38:835–841

    Article  Google Scholar 

  52. Franceschi F, Ruzzini L, Longo UG, Martina FM, Zobel BB, Maffulli N, Denaro V (2007) Equivalent clinical results of arthroscopic single-row and double-row suture anchor repair for rotator cuff tears: a randomized controlled trial. Am J Sports Med 35:1254–1260

    Article  Google Scholar 

  53. Koh KH, Kang KC, Lim TK, Shon MS, Yoo JC (2011) Prospective randomized clinical trial of single- versus double-row suture anchor repair in 2- to 4-cm rotator cuff tears: clinical and magnetic resonance imaging results. Arthroscopy 27:453–462

    Article  Google Scholar 

  54. Park MC, Elattrache NS, Ahmad CS, Tibone JE (2006) “Transosseous-equivalent” rotator cuff repair technique. Arthroscopy 22:1360.e1–1360.e5

    Article  Google Scholar 

  55. Park MC, Cadet ER, Levine WN, Bigliani LU, Ahmad CS (2005) Tendon-to-bone pressure distributions at a repaired rotator cuff footprint using transosseous suture and suture anchor fixation techniques. Am J Sports Med 33:1154–1159

    Article  Google Scholar 

  56. Gerber C, Fuchs B, Hodler J (2000) The results of repair of massive tears of the rotator cuff. J Bone Joint Surg Am 82:505–515

    Google Scholar 

  57. Jost B, Pfirrmann CW, Gerber C, Switzerland Z (2000) Clinical outcome after structural failure of rotator cuff repairs. J Bone Joint Surg Am 82:304–314

    Article  Google Scholar 

  58. Zumstein MA, Jost B, Hempel J, Hodler J, Gerber C (2008) The clinical and structural long-term results of open repair of massive tears of the rotator cuff. J Bone Joint Surg Am 90:2423–2431

    Article  Google Scholar 

  59. Dodson CC, Kitay A, Verma NN, Adler RS, Nguyen J, Cordasco FA, Altchek DW (2010) The long-term outcome of recurrent defects after rotator cuff repair. Am J Sports Med 38:35–39

    Article  Google Scholar 

  60. Miller BS, Downie BK, Kohen RB, Kijek T, Lesniak B, Jacobson JA, Hughes RE, Carpenter JE (2011) When do rotator cuff repairs fail? Serial ultrasound examination after arthroscopic repair of large and massive rotator cuff tears. Am J Sports Med 39:2064–2070

    Article  Google Scholar 

  61. Sugaya H, Maeda K, Matsuki K, Moriishi J (2005) Functional and structural outcome after arthroscopic full-thickness rotator cuff repair: single-row versus dual-row fixation. Arthroscopy 21:1307–1316

    Article  Google Scholar 

  62. Sugaya H, Maeda K, Matsuki K, Moriishi J (2007) Repair integrity and functional outcome after arthroscopic double-row rotator cuff repair. A prospective outcome study. J Bone Joint Surg Am 89:953–960

    Article  Google Scholar 

  63. Charousset C, Grimberg J, Duranthon LD, Bellaiche L, Petrover D (2007) Can a double-row anchorage technique improve tendon healing in arthroscopic rotator cuff repair?: A prospective, nonrandomized, comparative study of double-row and single-row anchorage techniques with computed tomographic arthrography tendon healing assessment. Am J Sports Med 35:1247–1253

    Article  Google Scholar 

  64. Charousset C, Bellaïche L, Kalra K, Petrover D (2010) Arthroscopic repair of full-thickness rotator cuff tears: is there tendon healing in patients aged 65 years or older? Arthroscopy 26:302–309

    Article  Google Scholar 

  65. Rodeo SA, Potter HG, Kawamura S, Turner AS, Kim HJ, Atkinson BL (2007) Biologic augmentation of rotator cuff tendon-healing with use of a mixture of osteoinductive growth factors. J Bone Joint Surg Am 89:2485–2497

    Article  Google Scholar 

  66. Galatz L, Rothermich S, VanderPloeg K, Petersen B, Sandell L, Thomopoulos S (2007) Development of the supraspinatus tendon-to-bone insertion: localized expression of extracellular matrix and growth factor genes. J Orthop Res 25:1621–1628

    Article  Google Scholar 

  67. Lee JY, Zhou Z, Taub PJ, Ramcharan M, Li Y, Akinbiyi T, Maharam ER, Leong DJ, Laudier DM, Ruike T, Torina PJ, Zaidi M, Majeska RJ, Schaffler MB, Flatow EL, Sun HB (2011) BMP-12 treatment of adult mesenchymal stem cells in vitro augments tendon-like tissue formation and defect repair in vivo. PLoS One 6:e17531

    Article  Google Scholar 

  68. Wang Q-W, Chen Z-L, Piao Y-J (2005) Mesenchymal stem cells differentiate into tenocytes by bone morphogenetic protein (BMP) 12 gene transfer. J Biosci Bioeng 100:418–422

    Article  Google Scholar 

  69. Kovacevic D, Rodeo SA (2008) Biological augmentation of rotator cuff tendon repair. Clin Orthop Relat Res 466:622–633

    Article  Google Scholar 

  70. Wolfman NM, Hattersley G, Cox K, Celeste AJ, Nelson R, Yamaji N, Dube JL, DiBlasio-Smith E, Nove J, Song JJ, Wozney JM, Rosen V (1997) Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. J Clin Invest 100:321–330

    Article  Google Scholar 

  71. Seeherman HJ, Archambault JM, Rodeo SA, Turner AS, Zekas L, D’Augusta D, Li XJ, Smith E, Wozney JM (2008) rhBMP-12 accelerates healing of rotator cuff repairs in a sheep model. J Bone Joint Surg Am 90:2206–2219

    Article  Google Scholar 

  72. Ide J, Kikukawa K, Hirose J, Iyama K-I, Sakamoto H, Fujimoto T, Mizuta H (2009) The effect of a local application of fibroblast growth factor-2 on tendon-to-bone remodeling in rats with acute injury and repair of the supraspinatus tendon. J Shoulder Elbow Surg 18:391–398

    Article  Google Scholar 

  73. Manning CN, Kim HM, Sakiyama-Elbert S, Galatz LM, Havlioglu N, Thomopoulos S (2011) Sustained delivery of transforming growth factor beta three enhances tendon-to-bone healing in a rat model. J Orthop Res 29:1099–1105

    Article  Google Scholar 

  74. Kovacevic D, Fox AJ, Bedi A, Ying L, Deng X-H, Warren RF, Rodeo SA (2011) Calcium-phosphate matrix with or without TGF-β3 improves tendon-bone healing after rotator cuff repair. Am J Sports Med 39:811–819

    Article  Google Scholar 

  75. Bedi A, Fox AJS, Kovacevic D, Deng X-H, Warren RF, Rodeo SA (2010) Doxycycline-mediated inhibition of matrix metalloproteinases improves healing after rotator cuff repair. Am J Sports Med 38:308–317

    Article  Google Scholar 

  76. Bedi A, Kovacevic D, Hettrich C, Gulotta LV, Ehteshami JR, Warren RF, Rodeo SA (2010) The effect of matrix metalloproteinase inhibition on tendon-to-bone healing in a rotator cuff repair model. J Shoulder Elbow Surg 19:384–391

    Article  Google Scholar 

  77. Encalada-Diaz I, Cole BJ, Macgillivray JD, Ruiz-Suarez M, Kercher JS, Friel NA, Valero-Gonzalez F (2011) Rotator cuff repair augmentation using a novel polycarbonate polyurethane patch: preliminary results at 12 months’ follow-up. J Shoulder Elbow Surg 20:788–794

    Article  Google Scholar 

  78. Li X, Xie J, Lipner J, Yuan X, Thomopoulos S, Xia Y (2009) Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett 9(7):2763–2768

    Article  Google Scholar 

  79. Moffat KL, Kwei AS-P, Spalazzi JP, Doty SB, Levine WN, Lu HH (2009) Novel nanofiber-based scaffold for rotator cuff repair and augmentation. Tissue Eng Part A 15:115–126

    Article  Google Scholar 

  80. Gulotta LV, Kovacevic D, Ehteshami JR, Dagher E, Packer JD, Rodeo SA (2009) Application of bone marrow-derived mesenchymal stem cells in a rotator cuff repair model. Am J Sports Med 37:2126–2133

    Article  Google Scholar 

  81. Gulotta LV, Kovacevic D, Packer JD, Ehteshami JR, Rodeo SA (2011) Adenoviral-mediated gene transfer of human bone morphogenetic protein-13 does not improve rotator cuff healing in a rat model. Am J Sports Med 39:180–187

    Article  Google Scholar 

  82. Gulotta LV, Kovacevic D, Packer JD, Deng X-H, Rodeo SA (2011) Bone marrow-derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model. Am J Sports Med 39:1282–1289

    Article  Google Scholar 

  83. Coombes BK, Bisset L, Vicenzino B (2010) Efficacy and safety of corticosteroid injections and other injections for management of tendinopathy: a systematic review of randomised controlled trials. Lancet 376:1751–1767

    Article  Google Scholar 

  84. de Jonge S, de Vos RJ, Weir A, van Schie HTM, Bierma-Zeinstra SMA, Verhaar JAN, Weinans H, Tol JL (2011) One-year follow-up of platelet-rich plasma treatment in chronic Achilles tendinopathy: a double-blind randomized placebo-controlled trial. Am J Sports Med 39:1623–1629

    Article  Google Scholar 

  85. de Mos M, van der Windt AE, Jahr H, van Schie HTM, Weinans H, Verhaar JAN, van Osch GJVM (2008) Can platelet-rich plasma enhance tendon repair? A cell culture study. Am J Sports Med 36:1171–1178

    Article  Google Scholar 

  86. Tohidnezhad M, Varoga D, Wruck CJ, Brandenburg LO, Seekamp A, Shakibaei M, Sönmez TT, Pufe T, Lippross S (2011) Platelet-released growth factors can accelerate tenocyte proliferation and activate the anti-oxidant response element. Histochem Cell Biol 135:453–460

    Article  Google Scholar 

  87. Zhang J, Wang JH-C (2010) Platelet-rich plasma releasate promotes differentiation of tendon stem cells into active tenocytes. Am J Sports Med 38:2477–2486

    Article  Google Scholar 

  88. Randelli PS, Arrigoni P, Cabitza P, Volpi P, Maffulli N (2008) Autologous platelet rich plasma for arthroscopic rotator cuff repair. A pilot study. Disabil Rehabil 30:1584–1589

    Article  Google Scholar 

  89. Jo CH, Kim JE, Yoon KS, Lee JH, Kang SB, Lee JH, Han HS, Rhee SH, Shin S (2011) Does platelet-rich plasma accelerate recovery after rotator cuff repair? A prospective cohort study. Am J Sports Med 39:2082–2090

    Article  Google Scholar 

  90. Randelli P, Arrigoni P, Ragone V, Aliprandi A, Cabitza P (2011) Platelet rich plasma in arthroscopic rotator cuff repair: a prospective RCT study, 2-year follow-up. J Shoulder Elbow Surg 20:518–528

    Article  Google Scholar 

  91. Castricini R, Longo UG, De Benedetto M, Panfoli N, Pirani P, Zini R, Maffulli N, Denaro V (2011) Platelet-rich plasma augmentation for arthroscopic rotator cuff repair: a randomized controlled trial. Am J Sports Med 39:258–265

    Article  Google Scholar 

  92. Bergeson AG, Tashjian RZ, Greis PE, Crim J, Stoddard GJ, Burks RT (2012) Effects of platelet-rich fibrin matrix on repair integrity of at-risk rotator cuff tears. Am J Sports Med 40(2):286–293

    Article  Google Scholar 

  93. Barber FA, Hrnack SA, Snyder SJ, Hapa O (2011) Rotator cuff repair healing influenced by platelet-rich plasma construct augmentation. Arthroscopy 27:1029–1035

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leesa M. Galatz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Galatz, L.M. (2013). Soft Tissue to Bone Healing in Rotator Cuff Repair. In: Thomopoulos, S., Birman, V., Genin, G. (eds) Structural Interfaces and Attachments in Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3317-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3317-0_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3316-3

  • Online ISBN: 978-1-4614-3317-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics