Skip to main content

Aging and Lymphatic Contractility: Current Status

  • Chapter
  • First Online:
Immunology of the Lymphatic System

Abstract

Aging impairs lymph flow, which is crucial for fluid and macromolecule homeostasis, fat absorption, and immunity. Aging of the lymphatic system is grossly understudied and may be contributory to many of the aging-related diseases of the elderly. We evaluated aging-associated changes in adult (9 months) and aged (24 months) isolated rat thoracic ducts (TDs) and mesenteric lymphatic vessels (MLV) and demonstrated that there was decreased amplitude, frequency, tone and pumping in aged TDs and MLVs as compared to their adult counterparts. Differences in contractile behavior of aged isolated MLV and those observed in situ suggest an important regulatory involvement of some cellular elements in the immediate environment of aged MLV. We identified mast cells lining MLV and demonstrated a greater degree of basal activation of mast cells in aged mesentery. We also identified increased superoxide and peroxynitrite radicals and other signs of oxidative stress in aged MLV as compared to adult. These studies provided first ground for understanding of some of the mechanisms responsible for impairment of lymphatic function associated with aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akl TJ et al (2011) Mesenteric lymph flow in adult and aged rats. Am J Physiol Heart Circ Physiol 301(5):H1828–H1840

    CAS  PubMed  Google Scholar 

  • Allen JM, Iggulden HL, McHale NG (1986) Beta-adrenergic inhibition of bovine mesenteric lymphatics. J Physiol 374:401–411

    CAS  PubMed  Google Scholar 

  • Amin K (2012) The role of mast cells in allergic inflammation. Respir Med 106(1):9–14

    PubMed  Google Scholar 

  • Armenio S et al (1981a) Spontaneous contractility in the human lymph vessels. Lymphology 14(4):173–178

    CAS  PubMed  Google Scholar 

  • Armenio S et al (1981b) Spontaneous contractility of the lymphatic vessels in man. Angilogia 33(6):325–327 [Spanish]

    CAS  Google Scholar 

  • Aulak KS et al (2004) Dynamics of protein nitration in cells and mitochondria. Am J Physiol Heart Circ Physiol 286(1):H30–H38

    CAS  PubMed  Google Scholar 

  • Barja G, Herrero A (2000) Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 14(2):312–318

    CAS  PubMed  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78(2):547–581

    CAS  PubMed  Google Scholar 

  • Beckman JS et al (1992) Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite. Arch Biochem Biophys 298(2):438–445

    CAS  PubMed  Google Scholar 

  • Beil WJ, Schulz M, Wefelmeyer U (2000) Mast cell granule composition and tissue location—a close correlation. Histol Histopathol 15(3):937–946

    CAS  PubMed  Google Scholar 

  • Benoit JN (1991) Relationships between lymphatic pump flow and total lymph flow in the small intestine. Am J Physiol 261(6 Pt 2):H1970–H1978

    CAS  PubMed  Google Scholar 

  • Benoit JN, Zawieja DC (1994) Gastrointestinal lymphatics. In: Johnson L (ed) Physiology of the gastrointestinal tract. Raven, New York, pp 1669–1692

    Google Scholar 

  • Benoit JN et al (1989) Characterization of intact mesenteric lymphatic pump and its responsiveness to acute edemagenic stress. Am J Physiol 257(6 Pt 2):H2059–H2069

    CAS  PubMed  Google Scholar 

  • Boesiger J et al (1998) Mast cells can secrete vascular permeability factor/ vascular endothelial cell growth factor and exhibit enhanced release after immunoglobulin E-dependent upregulation of fc epsilon receptor I expression. J Exp Med 188(6):1135–1145

    CAS  PubMed  Google Scholar 

  • Bohlen HG et al (2009) Phasic contractions of rat mesenteric lymphatics increase basal and phasic nitric oxide generation in vivo. Am J Physiol Heart Circ Physiol 297(4):H1319–H1328

    CAS  PubMed  Google Scholar 

  • Bridenbaugh EA, Gashev AA, Zawieja DC (2003) Lymphatic muscle: a review of contractile function. Lymphat Res Biol 1(2):147–158

    PubMed  Google Scholar 

  • Brill GE et al (2001) Functional organization of lymphatic microvessels of the rat mesentery. Ross Fiziol Zh Im I M Sechenova 87(5):600–607 [In Russian]

    CAS  PubMed  Google Scholar 

  • Brown KA et al (2006) Gene transfer of extracellular superoxide dismutase protects against vascular dysfunction with aging. Am J Physiol Heart Circ Physiol 290(6):H2600–H2605

    CAS  PubMed  Google Scholar 

  • Brown KA et al (2007) Effect of aging, MnSOD deficiency, and genetic background on endothelial function: evidence for MnSOD haploinsufficiency. Arterioscler Thromb Vasc Biol 27(9):1941–1946

    CAS  PubMed  Google Scholar 

  • Bruunsgaard H, Pedersen BK (2003) Age-related inflammatory cytokines and disease. Immunol Allergy Clin North Am 23(1):15–39

    PubMed  Google Scholar 

  • Bruunsgaard H, Pedersen M, Pedersen BK (2001) Aging and proinflammatory cytokines. Curr Opin Hematol 8(3):131–136

    CAS  PubMed  Google Scholar 

  • Bulekbaeva LE (1988) The volume rate of lymph flow in dogs in postnatal ontogeny. Zh Evol Biokhim Fiziol 24(4):599–600 [In Russian]

    CAS  PubMed  Google Scholar 

  • Cai H et al (2002) NAD(P)H oxidase-derived hydrogen peroxide mediates endothelial nitric oxide production in response to angiotensin II. J Biol Chem 277(50):48311–48317

    CAS  PubMed  Google Scholar 

  • Chatterjee V, Gashev AA (2012) Aging-associated shifts in functional status of mast cells located by adult and aged mesenteric lymphatic vessels. Am J Physiol Heart Circ Physiol 303(6):H693–H702

    CAS  PubMed  Google Scholar 

  • Chevalier S, Ferland G, Tuchweber B (1996) Lymphatic absorption of retinol in young, mature, and old rats: influence of dietary restriction. FASEB J 10(9):1085–1090

    CAS  PubMed  Google Scholar 

  • Chu Y et al (2005) Vascular effects of the human extracellular superoxide dismutase R213G variant. Circulation 112(7):1047–1053

    CAS  PubMed  Google Scholar 

  • Cooke CL, Davidge ST (2003) Endothelial-dependent vasodilation is reduced in mesenteric ­arteries from superoxide dismutase knockout mice. Cardiovasc Res 60(3):635–642

    CAS  PubMed  Google Scholar 

  • Crowe MJ et al (1997) Co-ordination of contractile activity in guinea-pig mesenteric lymphatics. J Physiol 500(Pt 1):235–244

    CAS  PubMed  Google Scholar 

  • Csiszar A et al (2002) Aging-induced phenotypic changes and oxidative stress impair coronary arteriolar function. Circ Res 90(11):1159–1166

    CAS  PubMed  Google Scholar 

  • Csiszar A et al (2003) Aging-induced proinflammatory shift in cytokine expression profile in coronary arteries. FASEB J 17(9):1183–1185

    CAS  PubMed  Google Scholar 

  • Davis MJ et al (2009) Myogenic constriction and dilation of isolated lymphatic vessels. Am J Physiol Heart Circ Physiol 296(2):H293–H302

    CAS  PubMed  Google Scholar 

  • Dawicki W, Marshall JS (2007) New and emerging roles for mast cells in host defence. Curr Opin Immunol 19(1):31–38

    CAS  PubMed  Google Scholar 

  • Dawicki W et al (2010) Mast cells, histamine, and IL-6 regulate the selective influx of dendritic cell subsets into an inflamed lymph node. J Immunol 184(4):2116–2123

    CAS  PubMed  Google Scholar 

  • Detoraki A et al (2009) Vascular endothelial growth factors synthesized by human lung mast cells exert angiogenic effects. J Allergy Clin Immunol 123(5):1142-9–1149.e1-5

    Google Scholar 

  • Didion SP, Hathaway CA, Faraci FM (2001) Superoxide levels and function of cerebral blood vessels after inhibition of CuZn-SOD. Am J Physiol Heart Circ Physiol 281(4):H1697–H1703

    CAS  PubMed  Google Scholar 

  • Didion SP et al (2002a) Increased superoxide and vascular dysfunction in CuZnSOD-deficient mice. Circ Res 91(10):938–944

    CAS  PubMed  Google Scholar 

  • Didion SP et al (2002b) Superoxide contributes to vascular dysfunction in mice that express human renin and angiotensinogen. Am J Physiol Heart Circ Physiol 283(4):H1569–H1576

    CAS  PubMed  Google Scholar 

  • Dixon JB et al (2006) Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics. Microcirculation 13(7):597–610

    PubMed  Google Scholar 

  • Dobbins DE (1998) Receptor mechanisms of serotonin-induced prenodal lymphatic constriction in the canine forelimb. Am J Physiol 274(2 Pt 2):H650–H654

    CAS  PubMed  Google Scholar 

  • Dobbins DE, Buehn MJ, Dabney JM (1990) Constriction of perfused lymphatics by acetylcholine, bradykinin and histamine. Microcirc Endothelium Lymphatics 6(6):409–425

    CAS  PubMed  Google Scholar 

  • Esposito P et al (2002) Corticotropin-releasing hormone and brain mast cells regulate blood–brain-­barrier permeability induced by acute stress. J Pharmacol Exp Ther 303(3):1061–1066

    CAS  PubMed  Google Scholar 

  • Fedosov IV et al (2002) Recording of lymph flow dynamics in microvessels using correlation properties of scattered coherent radiation. Quantum Electronics 32(11):970–974

    CAS  Google Scholar 

  • Felty Q et al (2005) Estrogen-induced mitochondrial reactive oxygen species as signal-transducing messengers. Biochemistry 44(18):6900–6909

    CAS  PubMed  Google Scholar 

  • Ferguson MK, Shahinian HK, Michelassi F (1988) Lymphatic smooth muscle responses to leukotrienes, histamine and platelet activating factor. J Surg Res 44(2):172–177

    CAS  PubMed  Google Scholar 

  • Fox JLR, von der Weid P-Y (2002) Effects of histamine on the contractile and electrical activity in isolated lymphatic vessels of the guinea-pig mesentery. Br J Pharmacol 136(8):1210–1218

    CAS  PubMed  Google Scholar 

  • Fridovich I (1978) Superoxide dismutases: defence against endogenous superoxide radical. Ciba Found Symp 65:77–93

    PubMed  Google Scholar 

  • Galanzha EI et al (2002) Nitric oxide in the lymphatic microvessel regulation. Ross Fiziol Zh Im I M Sechenova 88(8):983–989 [In Russian]

    CAS  PubMed  Google Scholar 

  • Galanzha EI, Tuchin VV, Zharov VP (2005) In vivo integrated flow image cytometry and lymph/blood vessels dynamic microscopy. J Biomed Opt 10(5):054018

    PubMed  Google Scholar 

  • Galli SJ, Nakae S, Tsai M (2005) Mast cells in the development of adaptive immune responses. Nat Immunol 6(2):135–142

    CAS  PubMed  Google Scholar 

  • Gashev AA (1989) The pump function of the lymphangion and the effect on it of different hydrostatic conditions. Fiziol Zh SSSR Im I M Sechenova 75(12):1737–1743 [In Russian]

    CAS  PubMed  Google Scholar 

  • Gashev AA (1991) The mechanism of the formation of a reverse fluid filling in the lymphangions. Fiziol Zh SSSR Im I M Sechenova 77(7):63–69 [In Russian]

    CAS  PubMed  Google Scholar 

  • Gashev AA (2002) Physiologic aspects of lymphatic contractile function: current perspectives. Ann N Y Acad Sci 979:178–187, discussion 188–96

    PubMed  Google Scholar 

  • Gashev AA (2008) Lymphatic vessels: pressure- and flow-dependent regulatory reactions. Ann N Y Acad Sci 1131:100–109

    PubMed  Google Scholar 

  • Gashev AA (2010) Basic mechanisms controlling lymph transport in the mesenteric lymphatic net. Ann N Y Acad Sci 1207(Suppl 1):E16–E20

    PubMed  Google Scholar 

  • Gashev AA, Zawieja DC (2001) Physiology of human lymphatic contractility: a historical perspective. Lymphology 34(3):124–134

    CAS  PubMed  Google Scholar 

  • Gashev AA, Zawieja DC (2010) Hydrodynamic regulation of lymphatic transport and the impact of aging. Pathophysiology 17(4):277–287

    PubMed  Google Scholar 

  • Gashev AA et al (1990) The mechanisms of lymphangion interaction in the process of the lymph movement. Fiziol Zh SSSR Im I M Sechenova 76(11):1489–1508 [In Russian]

    CAS  PubMed  Google Scholar 

  • Gashev AA, Davis MJ, Zawieja DC (2002) Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct. J Physiol 540(Pt 3):1023–1037

    CAS  PubMed  Google Scholar 

  • Gashev AA et al (2004) Regional variations of contractile activity in isolated rat lymphatics. Microcirculation 11(6):477–492

    CAS  PubMed  Google Scholar 

  • Gashev AA, Delp MD, Zawieja DC (2006) Inhibition of active lymph pump by simulated microgravity in rats. Am J Physiol Heart Circ Physiol 290(6):H2295–H2308

    CAS  PubMed  Google Scholar 

  • Gasheva OY, Zawieja DC, Gashev AA (2006) Contraction-initiated NO-dependent lymphatic relaxation: a self-regulatory mechanism in rat thoracic duct. J Physiol 575(Pt 3):821–832

    CAS  PubMed  Google Scholar 

  • Gasheva OY et al (2007) Age-related alterations of active pumping mechanisms in Rat thoracic duct. Microcirculation 14(8):827–839

    CAS  PubMed  Google Scholar 

  • Goldstein S et al (2000) Tyrosine nitration by simultaneous generation of (.)NO and O-(2) under physiological conditions. How the radicals do the job. J Biol Chem 275(5):3031–3036

    CAS  PubMed  Google Scholar 

  • Gomez CR, Boehmer ED, Kovacs EJ (2005) The aging innate immune system. Curr Opin Immunol 17(5):457–462

    CAS  PubMed  Google Scholar 

  • Gomez CR et al (2008) Innate immunity and aging. Exp Gerontol 43(8):718–728

    CAS  PubMed  Google Scholar 

  • Gongora MC et al (2006) Role of extracellular superoxide dismutase in hypertension. Hypertension 48(3):473–481

    CAS  PubMed  Google Scholar 

  • Grutzkau A et al (1998) Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206. Mol Biol Cell 9(4):875–884

    CAS  PubMed  Google Scholar 

  • Gunin AG et al (2011) Age-related changes in proliferation, the numbers of mast cells, eosinophils, and cd45-positive cells in human dermis. J Gerontol A Biol Sci Med Sci 66(4):385–392

    PubMed  Google Scholar 

  • Hargens AR, Zweifach BW (1977) Contractile stimuli in collecting lymph vessels. Am J Physiol 233(1):H57–H65

    CAS  PubMed  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300

    CAS  PubMed  Google Scholar 

  • Hart PH et al (1999) Age-related changes in dermal mast cell prevalence in BALB/c mice: functional importance and correlation with dermal mast cell expression of kit. Immunology 98(3):352–356

    CAS  PubMed  Google Scholar 

  • Harvima IT, Nilsson G (2011) Mast cells as regulators of skin inflammation and immunity. Acta Derm Venereol 91(6):644–650

    PubMed  Google Scholar 

  • Hayes H et al (2003) Development and characterization of endothelial cells from rat microlymphatics. Lymphat Res Biol 1(2):101–119

    CAS  PubMed  Google Scholar 

  • Heib V et al (2007) Mast cells are crucial for early inflammation, migration of Langerhans cells, and CTL responses following topical application of TLR7 ligand in mice. Blood 110(3):946–953

    CAS  PubMed  Google Scholar 

  • Hollander D, Dadufalza V (1990) Influence of aging on vitamin A transport into the lymphatic circulation. Exp Gerontol 25(1):61–65

    CAS  PubMed  Google Scholar 

  • Hollander J et al (2000) Superoxide dismutase gene expression in skeletal muscle: fiber-specific effect of age. Mech Ageing Dev 116(1):33–45

    CAS  PubMed  Google Scholar 

  • Johnston MG, Kanalec A, Gordon JL (1983) Effects of arachidonic acid and its cyclo-oxygenase and lipoxygenase products on lymphatic vessel contractility in vitro. Prostaglandins 25(1):85–98

    CAS  PubMed  Google Scholar 

  • Jung O et al (2003) Extracellular superoxide dismutase is a major determinant of nitric oxide bioavailability: in vivo and ex vivo evidence from ecSOD-deficient mice. Circ Res 93(7):622–629

    CAS  PubMed  Google Scholar 

  • Kimura S et al (2005) Role of NAD(P)H oxidase- and mitochondria-derived reactive oxygen species in cardioprotection of ischemic reperfusion injury by angiotensin II. Hypertension 45(5):860–866

    CAS  PubMed  Google Scholar 

  • Kluth W (1951) The presence of mast cells in the thoracic duct. Zentralbl Allg Pathol 87(4–5):139–141

    CAS  PubMed  Google Scholar 

  • Kwon S, Sevick-Muraca EM (2007) Noninvasive quantitative imaging of lymph function in mice. Lymphat Res Biol 5(4):219–231

    PubMed  Google Scholar 

  • Liochev SI, Fridovich I (2010) Mechanism of the peroxidase activity of Cu, Zn superoxide dismutase. Free Radic Biol Med 48(12):1565–1569

    CAS  PubMed  Google Scholar 

  • Lobov GI, Pan’kova MN (2010) Heparin inhibits contraction of smooth muscle cells in lymphatic vessels. Bull Exp Biol Med 149(1):4–6

    CAS  PubMed  Google Scholar 

  • Lorenz D et al (1998) Mechanism of peptide-induced mast cell degranulation. Translocation and patch-clamp studies. J Gen Physiol 112(5):577–591

    CAS  PubMed  Google Scholar 

  • Lundequist A, Pejler G (2011) Biological implications of preformed mast cell mediators. Cell Mol Life Sci 68(6):965–975

    CAS  PubMed  Google Scholar 

  • Lytinas M et al (2003) Acute stress results in skin corticotropin-releasing hormone secretion, mast cell activation and vascular permeability, an effect mimicked by intradermal corticotropin-­releasing hormone and inhibited by histamine-1 receptor antagonists. Int Arch Allergy Immunol 130(3):224–231

    CAS  PubMed  Google Scholar 

  • Macmillan-Crow LA, Cruthirds DL (2001) Invited review: manganese superoxide dismutase in disease. Free Radic Res 34(4):325–336

    CAS  PubMed  Google Scholar 

  • Malaviya R, Abraham SN (2001) Mast cell modulation of immune responses to bacteria. Immunol Rev 179:16–24

    CAS  PubMed  Google Scholar 

  • Malaviya R, Georges A (2002) Regulation of mast cell-mediated innate immunity during early response to bacterial infection. Clin Rev Allergy Immunol 22(2):189–204

    CAS  PubMed  Google Scholar 

  • Marchetti C et al (1997) Endothelin and nitric oxide synthase in lymphatic endothelial cells: immunolocalization in vivo and in vitro. Anat Rec 248(4):490–497

    CAS  PubMed  Google Scholar 

  • Marin J, Rodriguez-Martinez MA (1995) Nitric oxide, oxygen-derived free radicals and vascular endothelium. J Auton Pharmacol 15(4):279–307

    CAS  PubMed  Google Scholar 

  • Marshall JS (2004) Mast-cell responses to pathogens. Nat Rev Immunol 4(10):787–799

    CAS  PubMed  Google Scholar 

  • Marshall JS, Jawdat DM (2004) Mast cells in innate immunity. J Allergy Clin Immunol 114(1):21–27

    CAS  PubMed  Google Scholar 

  • Marshall JS, King CA, McCurdy JD (2003) Mast cell cytokine and chemokine responses to bacterial and viral infection. Curr Pharm Des 9(1):11–24

    CAS  PubMed  Google Scholar 

  • Mayhan WG (1997) Superoxide dismutase partially restores impaired dilatation of the basilar artery during diabetes mellitus. Brain Res 760(1–2):204–209

    CAS  PubMed  Google Scholar 

  • McHale NG (1990) Lymphatic innervation. Blood Vessels 27(2–5):127–136

    CAS  PubMed  Google Scholar 

  • McHale NG (1992) The lymphatic circulation. Ir J Med Sci 161(8):483–486

    CAS  PubMed  Google Scholar 

  • McHale NG, Meharg MK (1992) Co-ordination of pumping in isolated bovine lymphatic vessels. J Physiol 450:503–512

    CAS  PubMed  Google Scholar 

  • McHale NG, Roddie IC (1976) The effect of transmural pressure on pumping activity in isolated bovine lymphatic vessels. J Physiol 261(2):255–269

    CAS  PubMed  Google Scholar 

  • Mekori YA, Metcalfe DD (2000) Mast cells in innate immunity. Immunol Rev 173:131–140

    CAS  PubMed  Google Scholar 

  • Migally NB et al (1983) Density and ultrastructure of mast cells in lung vessels of aging rats exposed to and recovering from chronic hypoxia. Cell Tissue Res 232(3):601–608

    CAS  PubMed  Google Scholar 

  • Mislin H (1961) Experimental detection of autochthonous automatism of lymph vessels. Experientia 17:29–30 [In German]

    CAS  PubMed  Google Scholar 

  • Mislin H (1971) The contractile properties of lymphatic vessels. Angiologica 8(3–5):207–211

    CAS  PubMed  Google Scholar 

  • Mislin H, Schipp R (1966) Structural and functional relations of the lymph vessels. Progress in lymphology. In: Proceedings of the International symposium on lymphology, Zurich, July 19–23, pp. 360–365.

    Google Scholar 

  • Miura H et al (2003) Role for hydrogen peroxide in flow-induced dilation of human coronary arterioles. Circ Res 92(2):e31–e40

    CAS  PubMed  Google Scholar 

  • Mizuno R, Koller A, Kaley G (1998) Regulation of the vasomotor activity of lymph microvessels by nitric oxide and prostaglandins. Am J Physiol 274(3 Pt 2):R790–R796

    CAS  PubMed  Google Scholar 

  • Modi S et al (2007) Human lymphatic pumping measured in healthy and lymphoedematous arms by lymphatic congestion lymphoscintigraphy. J Physiol 583(Pt 1):271–285

    CAS  PubMed  Google Scholar 

  • Mousli M et al (1989) Activation of rat peritoneal mast cells by substance P and mastoparan. J Pharmacol Exp Ther 250(1):329–335

    CAS  PubMed  Google Scholar 

  • Muthuchamy M et al (2003) Molecular and functional analyses of the contractile apparatus in lymphatic muscle. FASEB J 17(8):920–922

    CAS  PubMed  Google Scholar 

  • Nagai T, Bridenbaugh EA, Gashev AA (2011) Aging-associated alterations in contractility of rat mesenteric lymphatic vessels. Microcirculation 18(6):463–473. doi:10.1111/j.1549-8719.2011.00107.x

    CAS  PubMed  Google Scholar 

  • Nomellini V, Gomez CR, Kovacs EJ (2008) Aging and impairment of innate immunity. Contrib Microbiol 15:188–205

    CAS  PubMed  Google Scholar 

  • Ohhashi T, Takahashi N (1991) Acetylcholine-induced release of endothelium-derived relaxing factor from lymphatic endothelial cells. Am J Physiol 260(4 Pt 2):H1172–H1178

    CAS  PubMed  Google Scholar 

  • Ohhashi T, Yokoyama S (1994) Nitric oxide and the lymphatic system. Jpn J Physiol 44(4):327–342

    CAS  PubMed  Google Scholar 

  • Ohhashi T, Kawai Y, Azuma T (1978) The response of lymphatic smooth muscles to vasoactive substances. Pflugers Arch 375:183–188

    CAS  PubMed  Google Scholar 

  • Ohhashi T, Azuma T (1980) Physiological and pharmacological characteristics of isolated bovine mesenteric lymphatics. Vascular neuroeffector mechanisms. Chap. 20, pp. 322–323

    Google Scholar 

  • Ohhashi T, Azuma T, Sakaguchi M (1980) Active and passive mechanical characteristics of bovine mesenteric lymphatics. Am J Physiol 239(1):H88–H95

    CAS  PubMed  Google Scholar 

  • Ohhashi T et al (2005) Current topics of physiology and pharmacology in the lymphatic system. Pharmacol Ther 105(2):165–188

    CAS  PubMed  Google Scholar 

  • Ohkuma M (1989) Lipoperoxide in dog thoracic duct lymph. Lymphology 22(3):150–152

    CAS  PubMed  Google Scholar 

  • Ohkuma M (1993) Lipoperoxide in the dermis of patients with lymph stasis. Lymphology 26(1):38–41

    CAS  PubMed  Google Scholar 

  • Olszewski WL (2002) Contractility patterns of normal and pathologically changed human lymphatics. Ann N Y Acad Sci 979:52–63, discussion 76–9

    PubMed  Google Scholar 

  • Olszewski WL (2008) Contractility patterns of human leg lymphatics in various stages of obstructive lymphedema. Ann N Y Acad Sci 1131:110–118

    PubMed  Google Scholar 

  • Orlov RS, Lobov GI (1984) Ionic mechanisms of the electrical activity of the smooth-muscle cells of the lymphatic vessels. Fiziol Zh SSSR Im I M Sechenova 70(5):712–721 [In Russian]

    CAS  PubMed  Google Scholar 

  • Orlov RS, Borisov AV, Borisova RP (1983) Lymphatic vessels. Structure and mechanisms of contractile activity. Nauka, Leningrad, p 253

    Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87(1):315–424

    CAS  PubMed  Google Scholar 

  • Pan’kova MN et al (2011) [Effects of histamine on contractile activity of lymphatic node capsules. The NO role]. Ross Fiziol Zh Im I M Sechenova 97(6):633–640

    PubMed  Google Scholar 

  • Petunov SG et al (2010) Effect of histamine on spontaneous contractions of mesenteric lymphatic vessels and lymph nodes of white rats: endothelium-dependent responses. Dokl Biol Sci 432:176–180 [Translated from Russian]

    CAS  PubMed  Google Scholar 

  • Plaku KJ, von der Weid PY (2006) Mast cell degranulation alters lymphatic contractile activity through action of histamine. Microcirculation 13(3):219–227

    CAS  PubMed  Google Scholar 

  • Rabinovitz AJ, Saphir O (1965) The thoracic duct; significance of age-related changes and of lipid in the wall. Circulation 31:899–905

    CAS  PubMed  Google Scholar 

  • Raible DG et al (1992) Mast cell mediators prostaglandin-D2 and histamine activate human eosinophils. J Immunol 148(11):3536–3542

    CAS  PubMed  Google Scholar 

  • Ramos CD et al (2003) Neutrophil migration induced by IL-8-activated mast cells is mediated by CINC-1. Cytokine 21(5):214–223

    CAS  PubMed  Google Scholar 

  • Saban R et al (2002) Mast cells mediate substance P-induced bladder inflammation through an NK(1) receptor-independent mechanism. Am J Physiol Renal Physiol 283(4):F616–F629

    PubMed  Google Scholar 

  • Salamon P et al (2005) Human mast cells release Interleukin-8 and induce neutrophil chemotaxis on contact with activated T cells. Allergy 60(10):1316–1319

    CAS  PubMed  Google Scholar 

  • Santa Maria C, Ayala A, Revilla E (1996) Changes in superoxide dismutase activity in liver and lung of old rats. Free Radic Res 25(5):401–405

    CAS  PubMed  Google Scholar 

  • Schmid-Schonbein GW (1990) Microlymphatics and lymph flow. Physiol Rev 70(4):987–1028

    CAS  PubMed  Google Scholar 

  • Schwartz LB (1987) Mediators of human mast cells and human mast cell subsets. Ann Allergy 58(4):226–235

    CAS  PubMed  Google Scholar 

  • Shakoory B et al (2004) The role of human mast cell-derived cytokines in eosinophil biology. J Interferon Cytokine Res 24(5):271–281

    CAS  PubMed  Google Scholar 

  • Shirasawa Y, Ikomi F, Ohhashi T (2000) Physiological roles of endogenous nitric oxide in lymphatic pump activity of rat mesentery in vivo. Am J Physiol 278(4):G551–G556

    CAS  Google Scholar 

  • Simon T, Laszlo V, Falus A (2011) Impact of histamine on dendritic cell functions. Cell Biol Int 35(10):997–1000

    CAS  PubMed  Google Scholar 

  • Sinzinger H, Kaliman J, Mannheimer E (1984) Regulation of human lymph contractility by prostaglandins and thromboxane. Lymphology 17(2):43–45

    CAS  PubMed  Google Scholar 

  • Solana R, Pawelec G, Tarazona R (2006) Aging and innate immunity. Immunity 24(5):491–494

    CAS  PubMed  Google Scholar 

  • Sun D et al (2004) Reduced release of nitric oxide to shear stress in mesenteric arteries of aged rats. Am J Physiol Heart Circ Physiol 286(6):H2249–H2256

    CAS  PubMed  Google Scholar 

  • Suto H et al (2006) Mast cell-associated TNF promotes dendritic cell migration. J Immunol 176(7):4102–4112

    CAS  PubMed  Google Scholar 

  • Suzuki H et al (1995) Substance P induces degranulation of mast cells and leukocyte adhesion to venular endothelium. Peptides 16(8):1447–1452

    CAS  PubMed  Google Scholar 

  • Thangaswamy S, Bridenbaugh EA, Gashev AA (2012) Evidence of increased oxidative stress in aged mesenteric lymphatic vessels. Lymphat Res Biol 10(2):53–62

    CAS  PubMed  Google Scholar 

  • Theoharides TC et al (1998) Corticotropin-releasing hormone induces skin mast cell degranulation and increased vascular permeability, a possible explanation for its proinflammatory effects. Endocrinology 139(1):403–413

    CAS  PubMed  Google Scholar 

  • Theoharides TC et al (2007) Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol Rev 217:65–78

    CAS  PubMed  Google Scholar 

  • Unthank J, Bohlen H (1988) Lymphatic pathways and role of valves in lymph propulsion from small intestine. Am J Physiol 254(3 Pt 1):G389–G398

    CAS  PubMed  Google Scholar 

  • Unthank JL, Hogan RD (1987) The effect of vasoactive agents on the contractions of the initial lymphatics of the bat’s wing. Blood Vessels 24:31–44

    CAS  PubMed  Google Scholar 

  • Van Helden DF (1993) Pacemaker potentials in lymphatic smooth muscle of the guinea-pig mesentery. J Physiol 471:465–479

    PubMed  Google Scholar 

  • Vanhoutte PM (2009) Endothelial dysfunction: the first step toward coronary arteriosclerosis. Circ J 73(4):595–601

    CAS  PubMed  Google Scholar 

  • Vanhoutte PM et al (2009) Endothelial dysfunction and vascular disease. Acta Physiol (Oxf) 196(2):193–222

    CAS  Google Scholar 

  • Veerareddy S et al (2004) Gender differences in myogenic tone in superoxide dismutase knockout mouse: animal model of oxidative stress. Am J Physiol Heart Circ Physiol 287(1):H40–H45

    CAS  PubMed  Google Scholar 

  • von der Weid P (2001) Review article: lymphatic vessel pumping and inflammation—the role of spontaneous constrictions and underlying electrical pacemaker potentials. Aliment Pharmacol Ther 15(8):1115–1129

    PubMed  Google Scholar 

  • von der Weid PY, Zhao J, Van Helden DF (2001) Nitric oxide decreases pacemaker activity in lymphatic vessels of guinea pig mesentery. Am J Physiol 280(6):H2707–H2716

    Google Scholar 

  • Watanabe N, Kawai Y, Ohhashi T (1988) Dual effects of histamine on spontaneous activity in isolated bovine mesenteric lymphatics. Microvasc Res 36(3):239–249

    CAS  PubMed  Google Scholar 

  • Waypa GB et al (2002) Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res 91(8):719–726

    CAS  PubMed  Google Scholar 

  • Wei YH et al (2001) Mitochondrial theory of aging matures—roles of mtDNA mutation and oxidative stress in human aging. Zhonghua Yi Xue Za Zhi (Taipei) 64(5):259–270

    CAS  Google Scholar 

  • Wilhelm DL, Yong LC, Watkins SG (1978) The mast cell: distribution and maturation in the rat. Agents Actions 8(1–2):146–152

    CAS  PubMed  Google Scholar 

  • Yokoyama S, Ohhashi T (1993) Effects of acetylcholine on spontaneous contractions in isolated bovine mesenteric lymphatics. Am J Physiol 264(5 Pt 2):H1460–H1464

    CAS  PubMed  Google Scholar 

  • Yong LC, Watkins S, Wilhelm DL (1975) The mast cell: distribution and maturation in the peritoneal cavity of the adult rat. Pathology 7(4):307–318

    CAS  PubMed  Google Scholar 

  • Yong LC, Watkins SG, Wilhelm DL (1977) The mast cell: II. Distribution and maturation in the peritoneal cavity of the young rat. Pathology 9(3):221–232

    CAS  PubMed  Google Scholar 

  • Zawieja DC, Davis KL (1993) Inhibition of the active lymph pump in rat mesenteric lymphatics by hydrogen peroxide. Lymphology 26(3):135–142

    CAS  PubMed  Google Scholar 

  • Zawieja DC et al (1991) Reactive oxygen metabolites inhibit spontaneous lymphatic contractions. Am J Physiol 260(6 Pt 2):H1935–H1943

    CAS  PubMed  Google Scholar 

  • Zawieja DC et al (1993) Distribution, propagation, and coordination of contractile activity in lymphatics. Am J Physiol 264(4 Pt 2):H1283–H1291

    CAS  PubMed  Google Scholar 

  • Zawieja DC, Kossman E, Pullin J (1999) Dynamics of the microlymphatic system. J Prog Appl Microcirc 23:100–109

    Google Scholar 

  • Zweifach B, Prather J (1975) Micromanipulation of pressure in terminal lymphatics in the mesentery. Am J Physiol 228(5):1326–1335

    CAS  PubMed  Google Scholar 

  • Zweifach B (1972) Micropressure measurements in the terminal lymphatics. In: Ditzel J, Lewis DH (eds) 7th European conference on microcirculation, Aberdeen, Part II Bibl Anat no. 12, pp. 361–365

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoliy A. Gashev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gashev, A.A., Chatterjee, V. (2013). Aging and Lymphatic Contractility: Current Status. In: Santambrogio, L. (eds) Immunology of the Lymphatic System. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3235-7_6

Download citation

Publish with us

Policies and ethics