Skip to main content

The Role of Bestrophin-1 in Intracellular Ca2+ Signaling

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Abstract

Mutations in the BEST1 gene lead to a variety of retinal degenerations, among them Best’s vitelliforme macular degeneration. To clarify the mechanism of the disease, the understanding of the function of BEST1 gene product, bestrophin-1, is mandatory. In overexpression studies bestrophin-1 appeared to function as a Ca2+-dependent Cl channel. On the other hand, bestrophin-1 is able to participate in intracellular Ca2+ signaling. Endogenously expressed bestrophin-1 largely localized to the cytosolic compartment close to the basolateral membrane of the retinal pigment epithelium (RPE) as it can be shown using differential centrifugation, immunohistochemistry, and transmission electron microscopy. To elucidate a cytosolic function of bestrophin-1, we explored the store-operated Ca2+ entry in short-time cultured porcine RPE cells. Depletion of cytosolic Ca2+stores by SERCA inhibition led to activation of Orai-1 Ca2+ channels. This resulted in an influx of extracellular Ca2+ into the cell which was reduced when bestrophin-1 expression was knocked down using siRNA techniques. Quantification of Ca2+ which can be released from cytosolic Ca2+ stores revealed that after reduction of bestrophin-1 expression less Ca2+ is stored in ER Ca2+ stores. Thus, bestrophin-1 functions as an intracellular Cl channel which helps to accumulate and to release Ca2+ from stores by conducting the counterion for Ca2+.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Petrukhin K, Koisti MJ, Bakall B, Li W, Xie G, Marknell T et al (1998) Identification of the gene responsible for best macular dystrophy. Nat Genet 19(3):241–247

    Article  PubMed  CAS  Google Scholar 

  2. Marquardt A, Stohr H, Passmore LA, Kramer F, Rivera A, Weber BH (1998) Mutations in a novel gene, VMD2, encoding a protein of unknown properties cause juvenile-onset vitelliform macular dystrophy (Best’s disease). Hum Mol Genet 7(9):1517–1525

    Article  PubMed  CAS  Google Scholar 

  3. Hartzell HC, Qu Z, Yu K, Xiao Q, Chien LT (2008) Molecular physiology of bestrophins: multifunctional membrane proteins linked to best disease and other retinopathies. Physiol Rev 88(2):639–672

    Article  PubMed  CAS  Google Scholar 

  4. Marmorstein AD, Cross HE, Peachey NS (2009) Functional roles of bestrophins in ocular epithelia. Prog Retin Eye Res 28(3):206–226

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Boon CJ, Klevering BJ, Leroy BP, Hoyng CB, Keunen JE, den Hollander AI (2009) The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Prog Retin Eye Res 28(3):187–205

    Article  PubMed  CAS  Google Scholar 

  6. Xiao Q, Hartzell HC, Yu K (2010) Bestrophins and retinopathies. Pflugers Arch 460(2):559–569

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Planells-Cases R, Jentsch TJ (2009) Chloride channelopathies. Biochim Biophys Acta 1792(3):173–189

    Article  PubMed  CAS  Google Scholar 

  8. White K, Marquardt A, Weber BH (2000) VMD2 mutations in vitelliform macular dystrophy (Best disease) and other maculopathies. Hum Mutat 15(4):301–308

    Article  PubMed  CAS  Google Scholar 

  9. Milenkovic VM, Rivera A, Horling F, Weber BH (2007) Insertion and topology of normal and mutant bestrophin-1 in the endoplasmic reticulum membrane. J Biol Chem 282(2):1313–1321

    Article  PubMed  CAS  Google Scholar 

  10. Marmorstein AD, Marmorstein LY, Rayborn M, Wang X, Hollyfield JG, Petrukhin K (2000) Bestrophin the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium. Proc Natl Acad Sci USA 97(23):12758–12763

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Neussert R, Muller C, Milenkovic VM, Strauss O (2010) The presence of bestrophin-1 modulates the Ca2+ recruitment from Ca2+ stores in the ER. Pflugers Arch 460(1):163–175

    Article  PubMed  CAS  Google Scholar 

  12. Reichhart N, Milenkovic VM, Halsband CA, Cordeiro S, Strauss O (2010) Effect of bestrophin-1 on L-type Ca(2+) channel activity depends on the Ca(2+) channel beta-subunit. Exp Eye Res 91(5):630–639

    Article  PubMed  CAS  Google Scholar 

  13. Sun H, Tsunenari T, Yau KW, Nathans J (2002) The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci USA 99(6):4008–4013

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Hartzell C, Putzier I, Arreola J (2005) Calcium-activated chloride channels. Annu Rev Physiol 67:719–758

    Article  PubMed  CAS  Google Scholar 

  15. Fischmeister R, Hartzell HC (2005) Volume sensitivity of the bestrophin family of chloride channels. J Physiol 562(Pt 2):477–491

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Xiao Q, Yu K, Cui YY, Hartzell HC (2009) Dysregulation of human bestrophin-1 by ceramide-induced dephosphorylation. J Physiol 587(Pt 18):4379–4391

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Marchant D, Yu K, Bigot K, Roche O, Germain A, Bonneau D et al (2007) New VMD2 gene mutations identified in patients affected by Best vitelliform macular dystrophy. J Med Genet 44(3):e70

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Yu K, Cui Y, Hartzell HC (2006) The bestrophin mutation A243V, linked to adult-onset vitelliform macular dystrophy, impairs its chloride channel function. Invest Ophthalmol Vis Sci 47(11):4956–4961

    Article  PubMed  Google Scholar 

  19. Qu Z, Hartzell HC (2008) Bestrophin Cl− channels are highly permeable to HCO3−. Am J Physiol Cell Physiol 294(6):C1371–C1377

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Chien LT, Hartzell HC (2008) Rescue of volume-regulated anion current by bestrophin mutants with altered charge selectivity. J Gen Physiol 132(5):537–546

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Rosenthal R, Heimann H, Agostini H, Martin G, Hansen LL, Strauss O (2007) Ca2+ channels in retinal pigment epithelial cells regulate vascular endothelial growth factor secretion rates in health and disease. Mol Vis 13:443–456

    PubMed Central  PubMed  CAS  Google Scholar 

  22. Milenkovic VM, Krejcova S, Reichhart N, Wagner A, Strauss O (2011) Interaction of bestrophin-1 and Ca2+ channel β-subunits: identification of new binding domains on the bestrophin-1  C-terminus. PLoS One; in revision

    Google Scholar 

  23. Yu K, Xiao Q, Cui G, Lee A, Hartzell HC (2008) The best disease-linked Cl− channel hBest1 regulates Ca V 1 (L-type) Ca2+ channels via src-homology-binding domains. J Neurosci 28(22):5660–5670

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Burgess R, Millar ID, Leroy BP, Urquhart JE, Fearon IM, De Baere E et al (2008) Biallelic mutation of BEST1 causes a distinct retinopathy in humans. Am J Hum Genet 82(1):19–31

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Davidson AE, Millar ID, Urquhart JE, Burgess-Mullan R, Shweikh Y, Parry N et al (2009) Missense mutations in a retinal pigment epithelium protein, bestrophin-1, cause retinitis pigmentosa. Am J Hum Genet 85(5):581–592

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Milenkovic VM, Roehrl E, Weber BH, Strauss O (2011) Disease-associated missense mutations in bestrophin-1 affect cellular trafficking and anion conductance. J Cell Sci (submitted)

    Google Scholar 

  27. Marmorstein LY, Wu J, McLaughlin P, Yocom J, Karl MO, Neussert R et al (2006) The light peak of the electroretinogram is dependent on voltage-gated calcium channels and antagonized by bestrophin (best-1). J Gen Physiol 127(5):577–589

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Zhang Y, Stanton JB, Wu J, Yu K, Hartzell HC, Peachey NS et al (2010) Suppression of Ca2+ signaling in a mouse model of Best disease. Hum Mol Genet 19(6):1108–1118

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Barro-Soria R, Aldehni F, Almaca J, Witzgall R, Schreiber R, Kunzelmann K (2010) ER-localized bestrophin 1 activates Ca2+-dependent ion channels TMEM16A and SK4 possibly by acting as a counterion channel. Pflugers Arch 459(3):485–497

    Article  PubMed  CAS  Google Scholar 

  30. Putney JW Jr (2005) Capacitative calcium entry: sensing the calcium stores. J Cell Biol 169(3):381–382

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Mas Gomez N, Tamm ER, Strauss O (2012) Involvement of bestrophin-1 in store-operated calcium entry in porcine retinal pigment epithelium. Pflugers Arch (Dec.4, Epub ahead of print)

    Google Scholar 

  32. Kunzelmann K, Kongsuphol P, Aldehni F, Tian Y, Ousingsawat J, Warth R et al (2009) Bestrophin and TMEM16-Ca(2+) activated Cl(−) channels with different functions. Cell Calcium 46(4):233–241

    Article  PubMed  CAS  Google Scholar 

  33. Strauss O (2005) Retinal pigment epithelium in visual function. Physiol Rev 85(3):845–881

    Article  PubMed  CAS  Google Scholar 

  34. Wimmers S, Karl MO, Strauss O (2007) Ion channels in the RPE. Prog Retin Eye Res 26(3):263–301

    Article  PubMed  CAS  Google Scholar 

  35. Maminishkis A, Jalickee S, Blaug SA, Rymer J, Yerxa BR, Peterson WM et al (2002) The P2Y(2) receptor agonist INS37217 stimulates RPE fluid transport in vitro and retinal reattachment in rat. Invest Ophthalmol Vis Sci 43(11):3555–3566

    PubMed  Google Scholar 

  36. Mitchell CH (2001) Release of ATP by a human retinal pigment epithelial cell line: potential for autocrine stimulation through subretinal space. J Physiol 534(Pt 1):193–202

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Peterson WM, Meggyesy C, Yu K, Miller SS (1997) Extracellular ATP activates calcium signaling, ion, and fluid transport in retinal pigment epithelium. J Neurosci 17(7):2324–2337

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Strauß PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this paper

Cite this paper

Strauß, O., Müller, C., Reichhart, N., Tamm, E., Gomez, N. (2014). The Role of Bestrophin-1 in Intracellular Ca2+ Signaling. In: Ash, J., Grimm, C., Hollyfield, J., Anderson, R., LaVail, M., Bowes Rickman, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 801. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3209-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3209-8_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3208-1

  • Online ISBN: 978-1-4614-3209-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics