Skip to main content

Molecular Pathology of Uncommon Carcinomas

  • Chapter
  • First Online:
Molecular Pathology of Lung Cancer

Part of the book series: Molecular Pathology Library ((MPLB,volume 6))

  • 1755 Accesses

Abstract

The WHO/IASLC classification of lung carcinomas has several broad categories that include the majority of lung carcinomas including adenocarcinoma, squamous carcinoma, small cell carcinoma, and large cell carcinomas. Uncommon carcinomas include sarcomatoid carcinomas, tumors of salivary gland type, and adenosquamous carcinoma. These tumors are distinguished from more common carcinomas by unique histologic patterns, or by combinations of patterns not seen in the more conventional categories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fishback NF, et al. Pleomorphic (spindle/giant cell) carcinoma of the lung. A clinicopathologic correlation of 78 cases. Cancer. 1994;73(12):2936–45.

    Article  PubMed  CAS  Google Scholar 

  2. Farrell DJ, Cooper PN, Malcolm AJ. Carcinosarcoma of lung associated with asbestosis. Histopathology. 1995;27(5):484–6.

    Article  PubMed  CAS  Google Scholar 

  3. Mochizuki T, et al. Pleomorphic carcinoma of the lung: clinicopathologic characteristics of 70 cases. Am J Surg Pathol. 2008;32(11):1727–35.

    Article  PubMed  Google Scholar 

  4. Nakajima M, et al. Sarcomatoid carcinoma of the lung: a clinicopathologic study of 37 cases. Cancer. 1999;86(4):608–16.

    Article  PubMed  CAS  Google Scholar 

  5. Rossi G, et al. Pulmonary carcinomas with pleomorphic, sarcomatoid, or sarcomatous elements: a clinicopathologic and immunohistochemical study of 75 cases. Am J Surg Pathol. 2003;27(3):311–24.

    Article  PubMed  Google Scholar 

  6. Pelosi G, et al. Pleomorphic carcinomas of the lung show a selective distribution of gene products involved in cell differentiation, cell cycle control, tumor growth, and tumor cell motility: a clinicopathologic and immunohistochemical study of 31 cases. Am J Surg Pathol. 2003;27(9):1203–15.

    Article  PubMed  Google Scholar 

  7. Lewis JS, Ritter JH, El-Mofty S. Alternative epithelial markers in sarcomatoid carcinomas of the head and neck, lung, and bladder-p63, MOC-31, and TTF-1. Mod Pathol. 2005;18(11):1471–81.

    Article  PubMed  CAS  Google Scholar 

  8. Leone A, et al. Identification of EGFR mutations in lung sarcomatoid carcinoma. Int J Cancer. 2011;128(3):732–5.

    Article  PubMed  CAS  Google Scholar 

  9. Pelosi G, et al. K-ras gene mutational analysis supports a monoclonal origin of biphasic pleomorphic carcinoma of the lung. Mod Pathol. 2004;17(5):538–46.

    Article  PubMed  CAS  Google Scholar 

  10. Kaira K, et al. Pulmonary pleomorphic carcinoma: a clinicopathological study including EGFR mutation analysis. J Thorac Oncol. 2010;5(4):460–5.

    Article  PubMed  Google Scholar 

  11. Holst VA, et al. p53 and K-ras mutational genotyping in pulmonary carcinosarcoma, spindle cell carcinoma, and pulmonary blastoma: implications for histogenesis. Am J Surg Pathol. 1997;21(7):801–11.

    Article  PubMed  CAS  Google Scholar 

  12. Nishida K, et al. Sarcomatoid adenocarcinoma of the lung: clinicopathological, immunohistochemical and molecular analyses. Anticancer Res. 2002;22(6):3477–83.

    PubMed  Google Scholar 

  13. Dacic S, et al. Molecular pathogenesis of pulmonary carcinosarcoma as determined by microdissection-based allelotyping. Am J Surg Pathol. 2002;26(4):510–6.

    Article  PubMed  Google Scholar 

  14. Yakut T, et al. Assessment of molecular events in squamous and non-squamous cell lung carcinoma. Lung Cancer. 2006;54(3):293–301.

    Article  PubMed  Google Scholar 

  15. Przygodzki RM, et al. Pleomorphic (giant and spindle cell) carcinoma is genetically distinct from adenocarcinoma and squamous cell carcinoma by K-ras-2 and p53 analysis. Am J Clin Pathol. 1996;106(4):487–92.

    PubMed  CAS  Google Scholar 

  16. Italiano A, et al. EGFR and KRAS status of primary sarcomatoid carcinomas of the lung: implications for anti-EGFR treatment of a rare lung malignancy. Int J Cancer. 2009;125(10):2479–82.

    Article  PubMed  CAS  Google Scholar 

  17. Ushiki A, et al. Genetic heterogeneity of EGFR mutation in pleomorphic carcinoma of the lung: response to gefitinib and clinical outcome. Jpn J Clin Oncol. 2009;39(4):267–70.

    Article  PubMed  Google Scholar 

  18. Shukuya T, et al. Efficacy of gefitinib for non-adenocarcinoma non-small-cell lung cancer patients harboring epidermal growth factor receptor mutations: a pooled analysis of published reports. Cancer Sci. 2011;102(5):1032–7.

    Article  PubMed  CAS  Google Scholar 

  19. Nakatani Y, et al. Aberrant nuclear localization and gene mutation of beta-catenin in low-grade adenocarcinoma of fetal lung type: up-regulation of the Wnt signaling pathway may be a common denominator for the development of tumors that form morules. Mod Pathol. 2002;15(6):617–24.

    Article  PubMed  Google Scholar 

  20. Sekine S, et al. Beta-catenin mutations in pulmonary blastomas: association with morule formation. J Pathol. 2003;200(2):214–21.

    Article  PubMed  CAS  Google Scholar 

  21. Macher-Goeppinger S, et al. Expression and mutation analysis of EGFR, c-KIT, and {beta}-catenin in pulmonary blastoma. J Clin Pathol. 2011;64(4):349–53.

    Article  PubMed  CAS  Google Scholar 

  22. Nordkvist A, et al. Recurrent rearrangements of 11q14-22 in mucoepidermoid carcinoma. Cancer Genet Cytogenet. 1994;74(2):77–83.

    Article  PubMed  CAS  Google Scholar 

  23. Tonon G, et al. t(11;19)(q21;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway. Nat Genet. 2003;33(2):208–13.

    Article  PubMed  CAS  Google Scholar 

  24. Seethala RR, et al. A reappraisal of the MECT1/MAML2 translocation in salivary mucoepidermoid carcinomas. Am J Surg Pathol. 2011;34(8):1106–21.

    Article  Google Scholar 

  25. Chenevert J, Barnes LE, Chiosea SI. Mucoepidermoid carcinoma: a five-decade journey. Virchows Arch. 2011;458(2):133–40.

    Article  PubMed  Google Scholar 

  26. Stenman G, et al. A child with a t(11;19)(q14-21;p12) in a pulmonary mucoepidermoid carcinoma. Virchows Arch. 1998;433(6):579–81.

    Article  PubMed  CAS  Google Scholar 

  27. Achcar Rde O, et al. Mammalian mastermind like 2 11q21 gene rearrangement in bronchopulmonary mucoepidermoid carcinoma. Hum Pathol. 2009;40(6):854–60.

    Article  PubMed  Google Scholar 

  28. O’Neill ID. Gefitinib as targeted therapy for mucoepidermoid carcinoma of the lung: possible significance of CRTC1-MAML2 oncogene. Lung Cancer. 2009;64(1):129–30.

    Article  PubMed  Google Scholar 

  29. Han SW, et al. Mucoepidermoid carcinoma of lung: potential target of EGFR-directed treatment. Lung Cancer. 2008;61(1):30–4.

    Article  PubMed  Google Scholar 

  30. Rossi G, et al. Mucoepidermoid carcinoma of the lung, response to EGFR inhibitors, EGFR and K-RAS mutations, and differential diagnosis. Lung Cancer. 2009;63(1):159–60.

    Article  PubMed  Google Scholar 

  31. Macarenco RS, et al. Salivary gland-type lung carcinomas: an EGFR immunohistochemical, molecular genetic, and mutational analysis study. Mod Pathol. 2008;21(9):1168–75.

    Article  PubMed  CAS  Google Scholar 

  32. Wong DW, et al. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer. 2009;115(8):1723–33.

    Article  PubMed  CAS  Google Scholar 

  33. Aubry MC, et al. Primary adenoid cystic carcinoma of the lung: absence of KIT mutations. Cancer. 2007;110(11):2507–10.

    Article  PubMed  Google Scholar 

  34. Higashi K, et al. Rearrangement of 9p13 as the primary chromosomal aberration in adenoid cystic carcinoma of the respiratory tract. Genes Chromosomes Cancer. 1991;3(1):21–3.

    Article  PubMed  CAS  Google Scholar 

  35. Kang SM, et al. Identical epidermal growth factor receptor mutations in adenocarcinomatous and squamous cell carcinomatous components of adenosquamous carcinoma of the lung. Cancer. 2007;109(3):581–7.

    Article  PubMed  CAS  Google Scholar 

  36. Sasaki H, et al. Mutation of epidermal growth factor receptor gene in adenosquamous carcinoma of the lung. Lung Cancer. 2007;55(1):129–30.

    Article  PubMed  Google Scholar 

  37. Toyooka S, et al. Mutations of epidermal growth factor receptor and K-ras genes in adenosquamous carcinoma of the lung. Int J Cancer. 2006;118(6):1588–90.

    Article  PubMed  CAS  Google Scholar 

  38. Graziano SL, et al. Prognostic significance of K-ras codon 12 mutations in patients with resected stage I and II non-small-cell lung cancer. J Clin Oncol. 1999;17(2):668–75.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain C. Borczuk MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Borczuk, A.C. (2012). Molecular Pathology of Uncommon Carcinomas. In: Cagle, P., et al. Molecular Pathology of Lung Cancer. Molecular Pathology Library, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3197-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3197-8_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3196-1

  • Online ISBN: 978-1-4614-3197-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics