Skip to main content

What is the Origin of Antiphospholipid Antibodies?

  • Chapter
  • First Online:
Antiphospholipid Syndrome

Abstract

Antiphospholipid antibodies (aPLs) are associated with the recurrent pregnancy loss and thrombosis that characterizes the antiphospholipid antibody syndrome. Although the ontogeny of these pathogenic antibodies has not been fully elucidated, there is evidence that indicates the involvement of both genetic and environmental factors. The evidence for the influence of HLA- and non-HLA-associated genes on the development of aPL and on the expression of disease has been garnered from animal genetic studies and human family and population studies. Several in vitro and in vivo animal studies have demonstrated the important role played by several environmental factors, in particular infectious agents, in the production of pathogenic aPL. Infectious agents can potentially induce autoimmune responses by molecular mimicry, selectively activating or destroying unique lymphocyte subsets, directing cytokine/chemokine release, or exposing cryptic autoantigens during cell necrosis and/or apoptosis. This chapter reviews the most up-to-date scientific evidence relating to the contributions of genetic and environmental factors to the development of pathogenic aPL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris EN. Syndrome of the black swan. Br J Rheumatol. 1987;26:324–6.

    PubMed  CAS  Google Scholar 

  2. Wilson WA, Gharavi AE, Koike T, et al. International consensus statement on preliminary classification criteria for definite antiphospholipid syndrome: report of an international workshop. Arthritis Rheum. 1999;42:1309–11.

    PubMed  CAS  Google Scholar 

  3. Miyakis S, Lockshin MD, Atsumi T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4:295–306.

    PubMed  CAS  Google Scholar 

  4. McNeil HP, Simpson RJ, Chesterman CN, Krilis SA. Anti-phospholipid antibodies are directed against a complex antigen that includes a lipid-binding inhibitor of coagulation: beta 2-glycoprotein I (apolipoprotein H). Proc Natl Acad Sci U S A. 1990;87:4120–4.

    PubMed Central  PubMed  CAS  Google Scholar 

  5. Galli M, Comfurius P, Maassen C, et al. Anticardiolipin antibodies (ACA) directed not to cardiolipin but to a plasma protein cofactor. Lancet. 1990;335:1544–7.

    PubMed  CAS  Google Scholar 

  6. Amengual O, Atsumi T, Koike T. Antiprothombin antibodies and the diagnosis of antiphospholipid syndrome. Clin Immunol. 2004;112:144–9.

    PubMed  CAS  Google Scholar 

  7. Permpikul P, Rao LV, Rapaport SI. Functional and binding studies of the roles of prothrombin and beta 2-glycoprotein I in the expression of lupus anticoagulant activity. Blood. 1994;83:2878–92.

    PubMed  CAS  Google Scholar 

  8. Rand JH, Wu XX, Quinn AS, et al. Hydroxychloroquine protects the annexin A5 anticoagulant shield from disruption by antiphospholipid antibodies: evidence for a novel effect for an old antimalarial drug. Blood. 2010;115:2292–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  9. Gharavi EE, Chaimovich H, Cucurull E, et al. Induction of antiphospholipid antibodies by immunization with synthetic viral and bacterial peptides. Lupus. 1999;8:449–55.

    PubMed  CAS  Google Scholar 

  10. Cesarman-Maus G, Rios-Luna NP, Deora AB, et al. Autoantibodies against the fibrinolytic receptor, annexin 2, in antiphospholipid syndrome. Blood. 2006;107:4375–82.

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Rand JH, Wu XX, Quinn AS, Taatjes DJ. Resistance to annexin A5 anticoagulant activity: a thrombogenic mechanism for the antiphospholipid syndrome. Lupus. 2008;17:922–30.

    PubMed  CAS  Google Scholar 

  12. Sebastiani GD, Galeazzi M. Genetic aspects of the antiphospholipid syndrome: HLA associations, Chapter 6. In: Cervera R, Reverter JC, Khamashta M, editors. Antiphospholipid syndrome in systemic autoimmune diseases, Handbook of systemic autoimmune diseases, vol. 10. Oxford: Elsevier BC; 2009. p. 81–9.

    Google Scholar 

  13. Castro-Marrero J, Balada E, Vilardell-Tarres M, Ordi-Ros J. Genetic risk factors of thrombosis in the antiphospholipid syndrome. Br J Haematol. 2009;147:289–96.

    PubMed  CAS  Google Scholar 

  14. Gharavi AE, Pierangeli SS, Harris EN. Origin of antiphospholipid antibodies. Rheum Dis Clin North Am. 2001;27:551–63.

    PubMed  CAS  Google Scholar 

  15. Gharavi AE, Pierangeli SS, Harris EN. Viral origin of antiphospholipid antibodies: endothelial cell activation and thrombus enhancement by CMV peptide-induced APL antibodies. Immunobiology. 2003;207:37–42.

    PubMed  CAS  Google Scholar 

  16. Hashimoto Y, Kawamura M, Ichikawa K, et al. Anticardiolipin antibodies in NZW × BXSB F1 mice. A model of antiphospholipid syndrome. J Immunol. 1992;149:1063–8.

    PubMed  CAS  Google Scholar 

  17. Hang LM, Izui S, Dixon FJ. (NZW × BXSB)F1 hybrid. A model of acute lupus and coronary vascular disease with myocardial infarction. J Exp Med. 1981;154:216–21.

    PubMed  CAS  Google Scholar 

  18. Oyaizu N, Yasumizu R, Miyama-Inaba M, et al. (NZW × BXSB)F1 mouse. A new animal model of idiopathic thrombocytopenic purpura. J Exp Med. 1988;167:2017–22.

    PubMed  CAS  Google Scholar 

  19. Kita Y, Sumida T, Iwamoto I, Yoshida S, Koike T. V gene analysis of anti-cardiolipin antibodies from (NZW × BXSB) F1 mice. Immunology. 1994;82:494–501.

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Ida A, Hirose S, Hamano Y, et al. Multigenic control of lupus-associated antiphospholipid syndrome in a model of (NZW × BXSB) F1 mice. Eur J Immunol. 1998;28:2694–703.

    PubMed  CAS  Google Scholar 

  21. Izui S, Masuda K, Yoshida H. Acute SLE in F1 hybrids between SB/Le and NZW mice; prominently enhanced formation of gp70 immune complexes by a Y chromosome-associated factor from SB/Le mice. J Immunol. 1984;132:701–4.

    PubMed  CAS  Google Scholar 

  22. Izui S, Higaki M, Morrow D, Merino R. The Y chromosome from autoimmune BXSB/MpJ mice induces a lupus-like syndrome in (NZW × C57BL/6)F1 male mice, but not in C57BL/6 male mice. Eur J Immunol. 1988;18:911–5.

    PubMed  CAS  Google Scholar 

  23. Gharavi AE, Mellors RC, Elkon KB. IgG anti-cardiolipin antibodies in murine lupus. Clin Exp Immunol. 1989;78:233–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Kita Y, Sumida T, Ichikawa K, et al. V gene analysis of anticardiolipin antibodies from MRL-lpr/lpr mice. J Immunol. 1993;151:849–56.

    PubMed  CAS  Google Scholar 

  25. Ahmed SA, Verthelyi D. Antibodies to cardiolipin in normal C57BL/6J mice: induction by estrogen but not dihydrotestosterone. J Autoimmun. 1993;6:265–79.

    PubMed  CAS  Google Scholar 

  26. Verthelyi D, Ahmed SA. Characterization of estrogen-induced autoantibodies to cardiolipin in non-autoimmune mice. J Autoimmun. 1997;10:115–25.

    PubMed  CAS  Google Scholar 

  27. Harvey AM, Shulman LE. Connective tissue disease and the chronic biologic false-positive test for syphilis (BFP reaction). Med Clin North Am. 1966;50:1271–9.

    PubMed  CAS  Google Scholar 

  28. Exner T, Barber S, Kronenberg H, Rickard KA. Familial association of the lupus anticoagulant. Br J Haematol. 1980;45:89–96.

    PubMed  CAS  Google Scholar 

  29. Jolidon RM, Knecht H, Humair L, de Torrente A. Different clinical presentations of a lupus anticoagulant in the same family. Klin Wochenschr. 1991;69:340–4.

    PubMed  CAS  Google Scholar 

  30. Mackworth-Young C, Chan J, Harris N, et al. High incidence of anticardiolipin antibodies in relatives of patients with systemic lupus erythematosus. J Rheumatol. 1987;14:723–6.

    PubMed  CAS  Google Scholar 

  31. Goldberg SN, Conti-Kelly AM, Greco TP. A family study of anticardiolipin antibodies and associated clinical conditions. Am J Med. 1995;99:473–9.

    PubMed  CAS  Google Scholar 

  32. Goel N, Ortel TL, Bali D, et al. Familial antiphospholipid antibody syndrome: criteria for disease and evidence for autosomal dominant inheritance. Arthritis Rheum. 1999;42:318–27.

    PubMed  CAS  Google Scholar 

  33. Dagenais P, Urowitz MB, Gladman DD, Norman CS. A family study of the antiphospholipid syndrome associated with other autoimmune diseases. J Rheumatol. 1992;19:1393–6.

    PubMed  CAS  Google Scholar 

  34. Rouget JP, Goudemand J, Montreuil G, Cosson A, Jaillard J. Lupus anticoagulant: a familial observation. Lancet. 1982;2:105.

    PubMed  CAS  Google Scholar 

  35. Mackie IJ, Colaco CB, Machin SJ. Familial lupus anticoagulants. Br J Haematol. 1987;67:359–63.

    PubMed  CAS  Google Scholar 

  36. May KP, West SG, Moulds J, Kotzin BL. Different manifestations of the antiphospholipid antibody syndrome in a family with systemic lupus erythematosus. Arthritis Rheum. 1993;36:528–33.

    PubMed  CAS  Google Scholar 

  37. Arnett FC, Olsen ML, Anderson KL, Reveille JD. Molecular analysis of major histocompatibility complex alleles associated with the lupus anticoagulant. J Clin Invest. 1991;87:1490–5.

    PubMed Central  PubMed  CAS  Google Scholar 

  38. Asherson RA, Doherty DG, Vergani D, Khamashta MA, Hughes GR. Major histocompatibility complex associations with primary antiphospholipid syndrome. Arthritis Rheum. 1992;35:124–5.

    PubMed  CAS  Google Scholar 

  39. Caliz R, Atsumi T, Kondeatis E, et al. HLA class II gene polymorphisms in antiphospholipid syndrome: haplotype analysis in 83 Caucasoid patients. Rheumatology (Oxford). 2001;40:31–6.

    CAS  Google Scholar 

  40. Bertolaccini ML, Atsumi T, Caliz AR, et al. Association of antiphosphatidylserine/prothrombin autoantibodies with HLA class II genes. Arthritis Rheum. 2000;43:683–8.

    PubMed  CAS  Google Scholar 

  41. Vargas-Alarcon G, Granados J, Bekker C, Alcocer-Varela J, Alarcon-Segovia D. Association of HLA-DR5 (possibly DRB1*1201) with the primary antiphospholipid syndrome in Mexican patients. Arthritis Rheum. 1995;38:1340–1.

    PubMed  CAS  Google Scholar 

  42. Galeazzi M, Sebastiani GD, Tincani A, et al. HLA class II alleles associations of anticardiolipin and anti-beta2GPI antibodies in a large series of European patients with systemic lupus erythematosus. Lupus. 2000;9:47–55.

    PubMed  CAS  Google Scholar 

  43. Hashimoto H, Yamanaka K, Tokano Y, et al. HLA-DRB1 alleles and beta 2 glycoprotein I-dependent anticardiolipin antibodies in Japanese patients with systemic lupus erythematosus. Clin Exp Rheumatol. 1998;16:423–7.

    PubMed  CAS  Google Scholar 

  44. Arnett FC, Thiagarajan P, Ahn C, Reveille JD. Associations of anti-beta2-glycoprotein I autoantibodies with HLA class II alleles in three ethnic groups. Arthritis Rheum. 1999;42:268–74.

    PubMed  CAS  Google Scholar 

  45. Wilson WA, Perez MC, Michalski JP, Armatis PE. Cardiolipin antibodies and null alleles of C4 in black Americans with systemic lupus erythematosus. J Rheumatol. 1988;15:1768–72.

    PubMed  CAS  Google Scholar 

  46. Wilson WA, Scopelitis E, Michalski JP, et al. Familial anticardiolipin antibodies and C4 deficiency genotypes that coexist with MHC DQB1 risk factors. J Rheumatol. 1995;22:227–35.

    PubMed  CAS  Google Scholar 

  47. Petri M, Watson R, Winkelstein JA, McLean RH. Clinical expression of systemic lupus ­erythematosus in patients with C4A deficiency. Medicine (Baltimore). 1993;72:236–44.

    PubMed  CAS  Google Scholar 

  48. Hirose N, Williams R, Alberts AR, et al. A role for the polymorphism at position 247 of the beta2-glycoprotein I gene in the generation of anti-beta2-glycoprotein I antibodies in the antiphospholipid syndrome. Arthritis Rheum. 1999;42:1655–61.

    PubMed  CAS  Google Scholar 

  49. Atsumi T, Tsutsumi A, Amengual O, et al. Correlation between beta2-glycoprotein I valine/leucine247 polymorphism and anti-beta2-glycoprotein I antibodies in patients with primary antiphospholipid syndrome. Rheumatology (Oxford). 1999;38:721–3.

    CAS  Google Scholar 

  50. Prieto GA, Cabral AR, Zapata-Zuniga M, et al. Valine/valine genotype at position 247 of the beta2-glycoprotein I gene in Mexican patients with primary antiphospholipid syndrome: association with anti-beta2-glycoprotein I antibodies. Arthritis Rheum. 2003;48:471–4.

    PubMed  CAS  Google Scholar 

  51. Reverter JC, Tàssies M. Genetic aspects of the antiphospholipid syndrome: associations with clinical manifestations. In: Cervera R, Reverter JC, Khamashta M, editors. Antiphospholipid syndrome in systemic autoimmune disease, vol. 10. Oxford: Elsevier BC; 2009. p. 91.

    Google Scholar 

  52. Rees DC, Cox M, Clegg JB. World distribution of factor V Leiden. Lancet. 1995;346:1133–4.

    PubMed  CAS  Google Scholar 

  53. Franco RF, Elion J, Tavella MH, Santos SE, Zago MA. The prevalence of factor V Arg306–>Thr (factor V Cambridge) and factor V Arg306–>Gly mutations in different human populations. Thromb Haemost. 1999;81:312–3.

    PubMed  CAS  Google Scholar 

  54. Schutt M, Kluter H, Hagedorn-Greiwe M, Fehm HL, Wiedemann GJ. Familial coexistence of primary antiphospholipid syndrome and factor VLeiden. Lupus. 1998;7:176–82.

    PubMed  CAS  Google Scholar 

  55. Brenner B, Vulfsons SL, Lanir N, Nahir M. Coexistence of familial antiphospholipid ­syndrome and factor V Leiden: impact on thrombotic diathesis. Br J Haematol. 1996;94:166–7.

    PubMed  CAS  Google Scholar 

  56. Chopra N, Koren S, Greer WL, et al. Factor V Leiden, prothrombin gene mutation, and thrombosis risk in patients with antiphospholipid antibodies. J Rheumatol. 2002;29:1683–8.

    PubMed  CAS  Google Scholar 

  57. Bentolila S, Ripoll L, Drouet L, Crassard I, Tournier-Lasserve E, Piette JC. Lack of association between thrombosis in primary antiphospholipid syndrome and the recently described thrombophilic 3′-untranslated prothrombin gene polymorphism. Thromb Haemost. 1997;78:1415.

    PubMed  CAS  Google Scholar 

  58. Bertolaccini ML, Atsumi T, Hunt BJ, Amengual O, Khamashta MA, Hughes GR. Prothrombin mutation is not associated with thrombosis in patients with antiphospholipid syndrome. Thromb Haemost. 1998;80:202–3.

    PubMed  CAS  Google Scholar 

  59. Ruiz-Arguelles GJ, Garces-Eisele J, Ruiz-Delgado GJ, Alarcon-Segovia D. The G20210A polymorphism in the 3’-untranslated region of the prothrombin gene in Mexican mestizo patients with primary antiphospholipid syndrome. Clin Appl Thromb Hemost. 1999;5:158–60.

    PubMed  CAS  Google Scholar 

  60. Sivera P, Bosio S, Bertero MT, Demaestri M, Mazza U, Camaschella C. G20210A homozygosity in antiphospholipid syndrome secondary to systemic lupus erythematosus. Haematologica. 2000;85:109–10.

    PubMed  CAS  Google Scholar 

  61. de Visser MC, Rosendaal FR, Bertina RM. A reduced sensitivity for activated protein C in the absence of factor V Leiden increases the risk of venous thrombosis. Blood. 1999;93:1271–6.

    PubMed  Google Scholar 

  62. Erkan D, Zhang HW, Shriky RC, Merrill JT. Dual antibody reactivity to beta2-glycoprotein I and protein S: increased association with thrombotic events in the antiphospholipid syndrome. Lupus. 2002;11:215–20.

    PubMed  CAS  Google Scholar 

  63. Ames PR, Margaglione M, Tommasino C, Bossone A, Iannaccone L, Brancaccio V. Impact of plasma homocysteine and prothrombin G20210 A on primary antiphospholipid syndrome. Blood Coagul Fibrinolysis. 2001;12:699–704.

    PubMed  CAS  Google Scholar 

  64. Lincz LF, Adams MJ, Scorgie FE, Thom J, Baker RI, Seldon M. Polymorphisms of the tissue factor pathway inhibitor gene are associated with venous thromboembolism in the antiphospholipid syndrome and carriers of factor V Leiden. Blood Coagul Fibrinolysis. 2007;18:559–64.

    PubMed  CAS  Google Scholar 

  65. Jimenez S, Tassies D, Espinosa G, et al. Double heterozygosity polymorphisms for platelet glycoproteins Ia/IIa and IIb/IIIa increases arterial thrombosis and arteriosclerosis in patients with the antiphospholipid syndrome or with systemic lupus erythematosus. Ann Rheum Dis. 2008;67:835–40.

    PubMed  CAS  Google Scholar 

  66. Yasuda S, Tsutsumi A, Atsumi T, et al. Gene polymorphisms of tissue plasminogen activator and plasminogen activator inhibitor-1 in patients with antiphospholipid antibodies. J Rheumatol. 2002;29:1192–7.

    PubMed  CAS  Google Scholar 

  67. Diz-Kucukkaya R, Hancer VS, Inanc M, Nalcaci M, Pekcelen Y. Factor XIII Val34Leu polymorphism does not contribute to the prevention of thrombotic complications in patients with antiphospholipid syndrome. Lupus. 2004;13:32–5.

    PubMed  CAS  Google Scholar 

  68. de Laat B, Derksen RH, Mackie IJ, et al. Annexin A5 polymorphism (-1C–>T) and the presence of anti-annexin A5 antibodies in the antiphospholipid syndrome. Ann Rheum Dis. 2006;65:1468–72.

    PubMed Central  PubMed  Google Scholar 

  69. Diz-Kucukkaya R, Inanc M, Afshar-Kharghan V, Zhang QE, Lopez JA, Pekcelen Y. P-selectin glycoprotein ligand-1 VNTR polymorphisms and risk of thrombosis in the antiphospholipid syndrome. Ann Rheum Dis. 2007;66:1378–80.

    PubMed Central  PubMed  CAS  Google Scholar 

  70. de la Red G, Tassies D, Espinosa G, et al. Factor XIII-A subunit Val34Leu polymorphism is associated with the risk of thrombosis in patients with antiphospholipid antibodies and high fibrinogen levels. Thromb Haemost. 2009;101:312–6.

    PubMed  Google Scholar 

  71. Bugert P, Pabinger I, Stamer K, et al. The risk for thromboembolic disease in lupus anticoagulant patients due to pathways involving P-selectin and CD154. Thromb Haemost. 2007;97:573–80.

    PubMed  CAS  Google Scholar 

  72. Bertolaccini ML, Atsumi T, Lanchbury JS, et al. Plasma tumor necrosis factor alpha levels and the -238*A promoter polymorphism in patients with antiphospholipid syndrome. Thromb Haemost. 2001;85:198–203.

    PubMed  CAS  Google Scholar 

  73. Pierangeli SS, Vega-Ostertag ME, Raschi E, et al. Toll-like receptor and antiphospholipid mediated thrombosis: in vivo studies. Ann Rheum Dis. 2007;66:1327–33.

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Gharavi AE, Sammaritano LR, Wen J, Elkon KB. Induction of antiphospholipid autoantibodies by immunization with beta 2 glycoprotein I (apolipoprotein H). J Clin Invest. 1992;90:1105–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  75. Uhtman IW, Gharavi AE. Viral infections and antiphospholipid antibodies. Semin Arthritis Rheum. 2002;31:256–63.

    Google Scholar 

  76. Cervera R, Asherson RA, Acevedo ML, Gómez-Puerta JA, Espinosa G, De La Red G, Gil V, Ramos-Casals M, García-Carrasco M, Ingelmo M, Font J. Antiphospholipid syndrome associated with infections: clinical and microbiological characteristics of 100 patients. Ann Rheum Dis. 2004;63:1312–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  77. Blank M, Asherson RA, Cervera R, Shoenfeld Y. Antiphospholipid syndrome infectious origin. J Clin Immunol. 2004;24:12–23.

    PubMed  CAS  Google Scholar 

  78. Gharavi AE, Pierangeli SS, Colden-Stanfield M, Liu XW, Espinola RG, Harris EN. GDKV-induced antiphospholipid antibodies enhance thrombosis and activate endothelial cells in vivo and in vitro. J Immunol. 1999;163:2922–7.

    PubMed  CAS  Google Scholar 

  79. Gharavi AE, Pierangeli SS, Gharavi EE, et al. Thrombogenic properties of antiphospholipid antibodies do not depend on their binding to beta2 glycoprotein 1 (beta2GP1) alone. Lupus. 1998;7:341–6.

    PubMed  CAS  Google Scholar 

  80. Gharavi AE, Pierangeli SS, Espinola RG, et al. Antiphospholipid antibodies induced in mice by immunization with a cytomegalovirus-derived peptide cause thrombosis and activation of endothelial cells in vivo. Arthritis Rheum. 2002;46:545–52.

    PubMed  CAS  Google Scholar 

  81. Gharavi AE, Vega-Ostertag M, Espinola RG, et al. Intrauterine fetal death in mice caused by cytomegalovirus-derived peptide induced aPL antibodies. Lupus. 2004;13:17–23.

    PubMed  CAS  Google Scholar 

  82. Blank M, Krause I, Fridkin M, et al. Bacterial induction of autoantibodies to beta2-glycoprotein-I accounts for the infectious etiology of antiphospholipid syndrome. J Clin Invest. 2002; 109:797–804.

    PubMed Central  PubMed  CAS  Google Scholar 

  83. Pierangeli SS, Blank M, Liu X, et al. A peptide that shares similarity with bacterial antigens reverses thrombogenic properties of antiphospholipid antibodies in vivo. J Autoimmun. 2004;22:217–25.

    PubMed  CAS  Google Scholar 

  84. Harris EN, Gharavi AE, Boey ML, et al. Anticardiolipin antibodies: detection by radioimmunoassay and association with thrombosis in systemic lupus erythematosus. Lancet. 1983;2:1211–4.

    PubMed  CAS  Google Scholar 

  85. Uthman IW, Gharavi AE. Viral infections and antiphospholipid antibodies. Semin Arthritis Rheum. 2002;31:256–63.

    PubMed  Google Scholar 

  86. Asherson RA. Multiorgan failure and antiphospholipid antibodies: the catastrophic antiphospholipid (Asherson’s) syndrome. Immunobiology. 2005;210:727–33.

    PubMed  CAS  Google Scholar 

  87. Sene D, Piette JC, Cacoub P. Antiphospholipid antibodies, antiphospholipid syndrome and viral infections. Rev Med Interne. 2009;30:135–41.

    PubMed  CAS  Google Scholar 

  88. van de Berg PJ, Heutinck KM, Raabe R, et al. Human cytomegalovirus induces systemic immune activation characterized by a type 1 cytokine signature. J Infect Dis. 2010;202:690–9.

    PubMed  Google Scholar 

  89. Prandota J. Possible pathomechanism of autoimmune hepatitis. Am J Ther. 2003;10:51–7.

    PubMed  Google Scholar 

  90. Nakagawa K, Harrison LC. The potential roles of endogenous retroviruses in autoimmunity. Immunol Rev. 1996;152:193–236.

    PubMed  CAS  Google Scholar 

  91. Molina V, Shoenfeld Y. Infection, vaccines and other environmental triggers of autoimmunity. Autoimmunity. 2005;38:235–45.

    PubMed  CAS  Google Scholar 

  92. Martinuc Porobic J, Avcin T, Bozic B, et al. Anti-phospholipid antibodies following vaccination with recombinant hepatitis B vaccine. Clin Exp Immunol. 2005;142:377–80.

    PubMed Central  PubMed  CAS  Google Scholar 

  93. Alusik S, Jandova R, Gebauerova M, Tesarek B, Fabian J. The anticardiolipin syndrome after breast reconstruction. Rozhl Chir. 1990;69:298–301.

    PubMed  CAS  Google Scholar 

  94. Rothschild B. Acrylamine-induced autoimmune phenomena. Clin Rheumatol. 2010;29:999–1005.

    PubMed  Google Scholar 

  95. Uetrecht J. Current trends in drug-induced autoimmunity. Autoimmun Rev. 2005;4:309–14.

    PubMed  CAS  Google Scholar 

  96. El-Rayes BF, Edelstein M. Unusual case of antiphospholipid antibody syndrome presenting with extensive cutaneous infarcts in a patient on long-term procainamide therapy. Am J Hematol. 2003;72:154.

    PubMed  Google Scholar 

  97. Sherer Y, Blank M, Shoenfeld Y. Antiphospholipid syndrome (APS): where does it come from? Best Pract Res Clin Rheumatol. 2007;21:1071–8.

    PubMed  CAS  Google Scholar 

  98. Merrill JT, Shen C, Gugnani M, Lahita RG, Mongey AB. High prevalence of antiphospholipid antibodies in patients taking procainamide. J Rheumatol. 1997;24:1083–8.

    PubMed  CAS  Google Scholar 

  99. Canoso RT, de Oliveira RM. Chlorpromazine-induced anticardiolipin antibodies and lupus anticoagulant: absence of thrombosis. Am J Hematol. 1988;27:272–5.

    PubMed  CAS  Google Scholar 

  100. Lillicrap DP, Pinto M, Benford K, Ford PM, Ford S. Heterogeneity of laboratory test results for antiphospholipid antibodies in patients treated with chlorpromazine and other phenothiazines. Am J Clin Pathol. 1990;93:771–5.

    PubMed  CAS  Google Scholar 

  101. Price BE, Rauch J, Shia MA, et al. Anti-phospholipid autoantibodies bind to apoptotic, but not viable, thymocytes in a beta 2-glycoprotein I-dependent manner. J Immunol. 1996;157:2201–8.

    PubMed  CAS  Google Scholar 

  102. Tincani A, Taraborelli M, Cattaneo R. Antiphospholipid antibodies and malignancies. Autoimmun Rev. 2010;9:200–2.

    PubMed  CAS  Google Scholar 

  103. Casciola-Rosen L, Rosen A, Petri M, Schlissel M. Surface blebs on apoptotic cells are sites of enhanced procoagulant activity: implications for coagulation events and antigenic spread in systemic lupus erythematosus. Proc Natl Acad Sci U S A. 1996;93:1624–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  104. Piroux V, Eschwege V, Freyssinet JM. Cell damage at the origin of antiphospholipid antibodies and their pathogenic potential in recurrent pregnancy loss. Infect Dis Obstet Gynecol. 1997;5:176–80.

    PubMed Central  PubMed  CAS  Google Scholar 

  105. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods. 1995;184:39–51.

    PubMed  CAS  Google Scholar 

  106. Verhoven B, Schlegel RA, Williamson P. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J Exp Med. 1995;182:1597–601.

    PubMed  CAS  Google Scholar 

  107. Koike T, Bohgaki M, Amengual O, Atsumi T. Antiphospholipid antibodies: lessons from the bench. J Autoimmun. 2007;28:129–33.

    PubMed  CAS  Google Scholar 

  108. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol. 1992;148:2207–16.

    PubMed  CAS  Google Scholar 

  109. Manfredi AA, Rovere P, Heltai S, et al. Apoptotic cell clearance in systemic lupus erythematosus. II. Role of beta2-glycoprotein I. Arthritis Rheum. 1998;41:215–23.

    PubMed  CAS  Google Scholar 

  110. Mevorach D, Zhou JL, Song X, Elkon KB. Systemic exposure to irradiated apoptotic cells induces autoantibody production. J Exp Med. 1998;188:387–92.

    PubMed Central  PubMed  CAS  Google Scholar 

  111. Levine JS, Subang R, Koh JS, Rauch J. Induction of anti-phospholipid autoantibodies by beta2-glycoprotein I bound to apoptotic thymocytes. J Autoimmun. 1998;11:413–24.

    PubMed  CAS  Google Scholar 

  112. Rauch J, Subang R, D’Agnillo P, Koh JS, Levine JS. Apoptosis and the antiphospholipid syndrome. J Autoimmun. 2000;15:231–5.

    PubMed  CAS  Google Scholar 

  113. Levine JS, Subang R, Nasr SH, et al. Immunization with an apoptotic cell-binding protein recapitulates the nephritis and sequential autoantibody emergence of systemic lupus erythematosus. J Immunol. 2006;177:6504–16.

    PubMed Central  PubMed  CAS  Google Scholar 

  114. Reed JH, Giannakopoulos B, Jackson MW, Krilis SA, Gordon TP. Ro 60 functions as a receptor for beta-glycoprotein I on apoptotic cells. Arthritis Rheum. 2009;60:860–9.

    PubMed  CAS  Google Scholar 

  115. Kruse K, Janko C, Urbonaviciute V, et al. Inefficient clearance of dying cells in patients with SLE: anti-dsDNA autoantibodies, MFG-E8, HMGB-1 and other players. Apoptosis. 2010;15:1098–113.

    PubMed  CAS  Google Scholar 

  116. Papalardo E, Romay-Penabad Z, Christadoss P, Pierangeli S. Induction of pathogenic antiphospholipid antibodies in vivo are dependent on expression of MHC-II genes. Lupus. 2010;19:496 (abstract).

    Google Scholar 

  117. Van Os G, Herwald H, Derksen R, Meijers J, deGroot P. Induction of anti-B2GPI antibodies by Streptococcus pyogenes surface protein H. Lupus 2010;19:496 (Abstract A002).

    Google Scholar 

  118. Vista E, Crowe S, Dedeke A, et al. Influenza vaccination can induce new onset of anticardiolipins but no B2glycoprotein I antibodies among patients with systemic lupus erythematosus. Lupus 2010;19:496 (Abstract 003).

    Google Scholar 

  119. Wen YY, Thiagarajan P, Gibbs R, Arnett f. Genetic variants associated with antiphospholipid antibodies. Lupus 2010;19:496 (Abstract A004).

    Google Scholar 

  120. Kato M, Horita T, Atsumi T, et al. Association between CD36 single nucleotide polymorphism and antiphospholipid syndrome. Lupus 2010;19:499 (Abstract A012).

    Google Scholar 

  121. Omersel J, Cucnik S, Avbersek Luznik I, Kveder T, Rozman B, Bozic B. Oxidation of antibodies as a trigger for autoimmunity. Lupus 2010;19:496 (Abstract A005).

    Google Scholar 

  122. McIntyre J, Page Faulk W. Oxidation of monoclonal antibodies unmasks antiphospholipid autoantibodies. Lupus 2010;19:497 (A009).

    Google Scholar 

  123. Rauch J, Dieude M, Subang R, Levine JS. The dual role of innate immunity in the antiphospholipid syndrome. Lupus. 2010;19:347–53.

    PubMed Central  PubMed  CAS  Google Scholar 

  124. Raschi E, Testoni C, Bosisio D, et al. Role of the MyD88 transduction signaling pathway in endothelial activation by antiphospholipid antibodies. Blood. 2003;101:3495–500.

    PubMed  CAS  Google Scholar 

  125. Boggini V, D’aMelio F, Raschi E, et al. APS clinical manifestations are associated with SNPs of inflammatory genes. Lupus 2010;19:499 (Abstract A010).

    Google Scholar 

  126. Aguilar-Valenzuela R, Nickerson K, Romay-Penabad Z, et al. Involvement of TLR7 and TLR9 in the production of antiphospholipid antibodies (Abstract). Arthritis Rheum 2011;63:S281.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

S.P. and M.B. are funded by a grant from the US-Israeli Binnational Reseach Foundation # 2009099; S.P. and R.W. are funded by a grant from the National Institutes of Health (NIH) # 1R01AR056745.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miri Blank PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Willis, R., Shoenfeld, Y., Pierangeli, S.S., Blank, M. (2012). What is the Origin of Antiphospholipid Antibodies?. In: Erkan, D., Pierangeli, S. (eds) Antiphospholipid Syndrome. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3194-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3194-7_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-3193-0

  • Online ISBN: 978-1-4614-3194-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics