Skip to main content

CoCrMo Alloy for Biomedical Applications

  • Chapter
  • First Online:
Biomedical Applications

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 55))

Abstract

Metallic materials used in biomedical applications have become increasingly important as the number of various implanted devices, e.g., orthopedic, cardiovascular, dental, and ophthalmological implants, constantly increases. In addition to titanium-based alloys and stainless steel, cobalt–chromium–molybdenum alloy (CoCrMo) is one of the most important materials used in orthopedic applications, i.e., total hip replacements. The increasing number of implanted hip replacements is the result of the prolongation of the average life expectancy and an active lifestyle in older age. Among the diseases of the joint that in most cases require surgical treatment, osteoarthritis is the most important. After implantation of a hip prosthesis, pain is reduced and the functionality of the joint is recovered. The average lifetime of the implanted prosthesis is about 15 years. Compared to implants used in the 1970s, the lifetime of contemporary hip prostheses progressively increases because of progress in surgical techniques, treatment, material manufacturing, and quality control. The ultimate goal is to produce hip prostheses that would endure the average postsurgical lifetime of more than 20 years and enable the patient to live an active lifestyle without pain. To achieve this goal, understanding alloy behavior in vitro and in vivo is crucial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams DF (1981) The properties and clinical use of cobalt-chromium alloy. In: Williams DF (ed) Biocompatibility of clinical implant materials, vol I. CRC Press, Boca Raton, FL, p 99

    Google Scholar 

  2. International standard ISO 5832-4-1996, 2nd edn. Implants for surgery – Metallic materials – Part 4: Cobalt-chromium-molybdenum casting alloy

    Google Scholar 

  3. International standard ISO 5832-12-2007, 2nd edn. Implants for surgery – Metallic materials – Part 12: Wrought cobalt-chromium-molybdenum alloy

    Google Scholar 

  4. International standard ISO 5832-5-2005, 3rd edn. Implants for surgery – Metallic materials – Part 5: Wrought cobalt-tungsten-nickel alloy

    Google Scholar 

  5. International standard ISO 5832-6-1997, 2nd edn. Implants for surgery – Metallic materials – Part 6: Wrought cobalt-nickel-chromium-molybdenum alloy

    Google Scholar 

  6. Hallab NJ, Jacobs JJ, Katz JL (2004) Orthopedic applications. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. Elsevier, London, p 526

    Google Scholar 

  7. Brunski JB (2004) Metals. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. Elsevier, London, p 137

    Google Scholar 

  8. Ring PA (1971) J Bone Joint Surg Br 53B:344

    Google Scholar 

  9. Charnley J (1971) J Bone Joint Surg Br 53B:342

    Google Scholar 

  10. Milošev I (2011) Pure Appl Chem 83:309

    Article  Google Scholar 

  11. Hoar TP, Mears DC (1966) Proc R Soc London 294:486

    Article  CAS  Google Scholar 

  12. Hanks JH, Wallace RE (1949) Proc Soc Exp Biol Med 71:196

    CAS  Google Scholar 

  13. Kuhn AT (1981) Biomaterials 2:68

    Article  CAS  Google Scholar 

  14. Espevik S (1978) Acta Odontol Scand 36:113

    Article  CAS  Google Scholar 

  15. Mueller HJ, Greener EH (1970) J Biomed Mater Res 4:29

    Article  CAS  Google Scholar 

  16. Cahoon JR, Hill LD (1978) J Biomed Mater Res 12:805

    Article  CAS  Google Scholar 

  17. Galante J, Rosteker W (1972) Clin Orthop 86:237

    Article  CAS  Google Scholar 

  18. Rostoker W, Galante JO, Lereim P (1978) J Biomed Mater Res 12:823

    Article  CAS  Google Scholar 

  19. Lucas LC, Buchanan RA, Lemons JE (1981) J Biomed Mater Res 15:731

    Article  CAS  Google Scholar 

  20. Kummer FJ, Rose RM (1983) J Bone Joint Surg Am 165-A:1125

    Google Scholar 

  21. Griffin CD, Buchanan RA, Lemons JE (1983) J Biomed Mater Res 17:489

    Article  CAS  Google Scholar 

  22. Thompson NG, Buchanan RA, Lemons JE (1979) J Biomed Mater Res 13:35

    Article  CAS  Google Scholar 

  23. Lucas LC, Buchanan RA, Lemons JE, Griffin CD (1982) J Biomed Mater Res 16:799

    Article  CAS  Google Scholar 

  24. Syrett BC, Wing SS (1978) Corrosion 34:379

    CAS  Google Scholar 

  25. Cohen J (1962) J Bone Joint Surg 44-A:307

    Google Scholar 

  26. Süry P (1977) Corrosion Sci 17:155

    Article  Google Scholar 

  27. Mears DC (1975) J Biomed Mater Res 9:133

    Article  CAS  Google Scholar 

  28. Igual Muňoz A, Mischler S (2007) J Electrochem Soc 154:C562

    Article  CAS  Google Scholar 

  29. Hodgson AWE, Kurz S, Virtanen S, Fervel V, Olsson C-OA, Mischler S (2004) Electrochim Acta 49:2167

    Article  CAS  Google Scholar 

  30. Metikoš-Huković M, Babić R (2007) Corros Sci 49:3570

    Article  CAS  Google Scholar 

  31. Kocijan A, Milošev I, Merl DK, Pihlar B (2004) J Appl Electrochem 34:517

    Article  CAS  Google Scholar 

  32. Metikoš-Huković M, Babić R, Omanović D, Milošev I (2007) ECS Trans 2:43

    Article  Google Scholar 

  33. Milošev I, Strehblow HH (2003) Electrochim Acta 48:2767

    Article  CAS  Google Scholar 

  34. Metikoš-Huković M, Pilić Z, Babić R, Omanović D (2006) Acta Biomater 2:693

    Article  Google Scholar 

  35. Kocijan A, Milošev I, Pihlar B (2003) J Mater Sci Mater Med 14:69

    Article  CAS  Google Scholar 

  36. Milošev I, Strehblow H-H (2000) J Biomed Mater Res 52:404

    Article  Google Scholar 

  37. Milošev I (2002) J Appl Electrochem 32:311

    Article  Google Scholar 

  38. Kocijan A, Milošev I, Pihlar B (2004) J Mater Sci Mater Med 15:643

    Article  CAS  Google Scholar 

  39. Valero Vidal C, Igual Muňoz A (2008) Corrosion Sci 50:1954

    Article  CAS  Google Scholar 

  40. Valero Vidal C, Olmo Juan A, Igual Muňoz A (2010) J Colloids Surf B Biointerfaces 80:1

    Article  CAS  Google Scholar 

  41. Karimi S, Nickchi T, Alfantazi A (2011) Corrosion Sci 53:3262

    Article  CAS  Google Scholar 

  42. Ouerd A, Alemany-Dumont C, Normand B, Szunerits S (2008) Electrochim Acta 53:4461

    Article  CAS  Google Scholar 

  43. Sato N, Ohtsuka T (1978) J Electrochem Soc 125:1735

    Article  CAS  Google Scholar 

  44. Burke LD, Lyons ME, Murphy OJ (1982) J Electroanal Chem 132:247

    Article  CAS  Google Scholar 

  45. Ismail KM, Badawy WA (2000) J Appl Electrochem 30:1303

    Article  CAS  Google Scholar 

  46. Badawy WA, Al-Kharafi FM, Al-Ajmi JR (2000) J Appl Electrochem 30:693

    Article  CAS  Google Scholar 

  47. Foelske A, Strehblow H-H (2000) Surf Interface Anal 29:548

    Article  CAS  Google Scholar 

  48. Kudo K (1978) In: Frankenthal P, Kruger J (eds) Passivity of metals. Electrochemical Society, Princeton, NJ, p 918

    Google Scholar 

  49. Heusler KE (1978) In: Frankenthal P, Kruger J (eds) Passivity of metals. Electrochemical Society, Princeton, NJ, p 771

    Google Scholar 

  50. Gervasi CA, Biaggio SR, Vilche JR, Ariva AJ (1989) Corros Sci 29:427

    Article  CAS  Google Scholar 

  51. Povey AF, Metcalfe AA (1977) J Electroanal Chem 84:73

    Article  CAS  Google Scholar 

  52. Wang K, Li Y-S, He P (1998) Electrochim Acta 43:2459

    Article  CAS  Google Scholar 

  53. Moffat TP, Latanision RM (1992) J Electrochem Soc 139:1869

    Article  CAS  Google Scholar 

  54. Haupt S, Strehblow H-H (1987) J Electroanal Chem 228:365

    Article  CAS  Google Scholar 

  55. Melendres CA, Pankuch N, Li YS, Knight RL (1992) Electrochim Acta 37:2747

    Article  CAS  Google Scholar 

  56. Schmuki P, Virtanen S, Davenport AJ, Vitus CM (1996) J Electrochem Soc 143:3997

    Article  CAS  Google Scholar 

  57. Seo M, Saito R, Saho N (1980) J Electrochem Soc 127:1909

    Article  CAS  Google Scholar 

  58. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions, 2nd edn. NACE, Huston

    Google Scholar 

  59. Bardwell JA, Sproule GI, MacDougall B, Graham MJ (1992) J Electrochem Soc 139:371

    Article  CAS  Google Scholar 

  60. Metikoš-Huković M, Ceraj-Cerić M (1987) J Electrochem Soc 134:2193

    Article  Google Scholar 

  61. Lorang G, Da Cunha Belo M, Simoes AMP, Ferreira MGS (1994) J Electrochem Soc 141:3347

    Article  CAS  Google Scholar 

  62. Olefjord I, Brox B, Jelvestam U (1985) J Electrochem Soc 132:2854

    Article  CAS  Google Scholar 

  63. Piao T, Park S-M (1997) J Electrochem Soc 144:3371

    Article  CAS  Google Scholar 

  64. Li Y-S, Wang K, He P, Huang BX, Kovacs P (1999) J Raman Spectrosc 30:97

    Article  CAS  Google Scholar 

  65. Codaro EN, Melnikov P, Ramires I, Guastaldi AC (2000) Russ J Electrochem 36:1117

    Article  CAS  Google Scholar 

  66. Pound BG (2010) J Biomed Mater Res A 94A:93

    Article  CAS  Google Scholar 

  67. Gilbert JL (1998) J Biomed Mater Res 40:233

    Article  CAS  Google Scholar 

  68. Haeri M, Goldberg S, Gilbert JL (2010) Corros Sci 53:582

    Article  CAS  Google Scholar 

  69. Gilbert JL, Bai Z, Bearinger J, Megremis S (2004) Medical device materials: Proceedings of the materials and processes for medical devices conference. ASM International, Anaheim, p 139

    Google Scholar 

  70. Smith SM, Gilbert JL (1994) In: Kovacs P, Istephanous NS (eds) Proceedings of the symposium on compatibility of biomedical implants, 94-15. The Electrochemical Society, Pennington, NJ, p 229

    Google Scholar 

  71. Brown SA, Farnsworth LJ, Merritt K, Crowe TD (1988) J Biomed Mater Res 22:321

    Article  CAS  Google Scholar 

  72. Őzçlik F, Gülen J, Akdoğan A, Pişkin S (1999) Prakt Metallogr 36:385

    Google Scholar 

  73. Lewis AC, Heard PJ (2005) J Biomed Mater Res 75A:365

    Article  CAS  Google Scholar 

  74. Urban RM, Jacobs JJ, Gilbert JL, Galante JO (1994) J Bone Joint Surg Am 76-A:1345

    Google Scholar 

  75. Ouerd A, Alemany-Dumont C, Berthomé G, Normand B, Szunerits S (2007) J Electrochem Soc 154:C593

    Article  CAS  Google Scholar 

  76. Black J (1992) Biological performance of materials. Dekker, New York

    Google Scholar 

  77. Smith RM, Martell AE (eds) (1977) Critical stability constants, vol 3. Plenum, New York

    Google Scholar 

  78. Peters T Jr (1996) All about albumin. Academic Press, San Diego, CA

    Google Scholar 

  79. Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K (1999) Protein Eng 12:439

    Article  CAS  Google Scholar 

  80. Omanovic S, Roscoe SG (1999) Langmuir 15:8315

    Article  CAS  Google Scholar 

  81. Omanovic S, Roscoe SG (2000) J Colloid Interface Sci 227:452

    Article  CAS  Google Scholar 

  82. Stupnišek-Lisac E, Metikoš-Huković M, Lenčić D, Forkapić-Furac K (1992) Corrosion 48:924

    Article  Google Scholar 

  83. Jackson DR, Omanovic S, Roscoe SG (2000) Langmuir 16:5449

    Article  CAS  Google Scholar 

  84. Alfonso MLCA, Villamil Jaimes RFV, Arêas EPG, Capri MR, Oliveira E, Agostinho SML (2008) Colloids Surf A Physicochem Eng Asp 317:760

    Article  CAS  Google Scholar 

  85. Giacomelli CE, Esplandiú MJ, Ortiz PI, Avena MJ, De Pauli CP (1999) J Colloid Interface Sci 218:404

    Article  CAS  Google Scholar 

  86. Kopac T, Bozgeyik K, Yener J (2008) Colloids Surf A Physicochem Eng Asp 322:19

    Article  CAS  Google Scholar 

  87. Ithurbide A, Frateur I, Galtayries P, Marcus P (2007) Electrochim Acta 53:1336

    Article  CAS  Google Scholar 

  88. Pradier CM, Kármán F, Telegdi J, Kálman E, Marcus P (2003) J Phys Chem B 107:6766

    Article  CAS  Google Scholar 

  89. Reyes L, Bert J, Fornazero J, Cohen R, Heinrich L (2002) Colloids Surf B 25:99

    Article  CAS  Google Scholar 

  90. Lu DR, Park K (1991) J Colloids Interface 144:271

    Article  CAS  Google Scholar 

  91. Svare CW, Belton G, Korostoff E (1970) J Biomed Mater Res 4:457

    Article  CAS  Google Scholar 

  92. Brown SA, Merrit K (1980) J Biomed Mater Res 14:173

    Article  CAS  Google Scholar 

  93. Williams RL, Brown SA, Merritt K (1988) Biomaterials 9:181

    Article  CAS  Google Scholar 

  94. Merritt K, Brown SA (1988) J Biomed Mater Res 22:111

    Article  CAS  Google Scholar 

  95. Clark GCF, Williams DF (1982) J Biomed Mater Res 16:125

    Article  CAS  Google Scholar 

  96. Yamauchi O, Odani A (1996) Pure Appl Chem 68:469

    Article  CAS  Google Scholar 

  97. Yang J, Black J (1994) Biomaterials 15:262

    Article  CAS  Google Scholar 

  98. Woodman JL, Black J, Jiminez SA (1984) J Biomed Mater Res 18:99

    Article  CAS  Google Scholar 

  99. Merritt K, Brown SA, Sharkey NA (1984) J Biomed Mater Res 18:991

    Article  CAS  Google Scholar 

  100. Merritt K, Brown SA, Sharkey NA (1984) J Biomed Mater Res 18:1005

    Article  CAS  Google Scholar 

  101. Hallab NJ, Skipor A, Jacobs JJ (2003) J Biomed Mater Res A 65:311

    Article  CAS  Google Scholar 

  102. Hallab NJ, Jacobs JJ, Skipor A, Black J, Mikecz K, Galante JO (2000) J Biomed Mater Res 49:353

    Article  CAS  Google Scholar 

  103. Contu F, Elsener B, Böhni H (2002) J Biomed Mater Res 62:412

    Article  CAS  Google Scholar 

  104. Contu F, Elsener B, Böhni H (2003) J Biomed Mater Res 67A:246

    Article  CAS  Google Scholar 

  105. Hiromoto S, Noda K, Hanawa T (2002) Corrosion Sci 44:955

    Article  Google Scholar 

  106. Hiromoto S, Onodera E, Chiba A, Asami K, Hanawa T (2005) Biomaterials 26:4912

    Article  CAS  Google Scholar 

  107. Hsu RW-W, Yang C-C, Huang C-A, Chen Y-S (2005) Mater Chem Phys 93:531

    Article  CAS  Google Scholar 

  108. Hanawa T, Hiromoto S, Asami K (2001) Appl Surf Sci 183:68

    Article  CAS  Google Scholar 

  109. Lin H-Y, Bumgardner JD (2004) Biomaterials 25:1233

    Article  CAS  Google Scholar 

  110. Lewis AC, Kilburn MR, Heard PJ, Scott TB, Hallam KR, Allen GC, Learmonth ID (2006) J Orthop Res 24:1587

    Article  CAS  Google Scholar 

  111. Landolt D, Mischler S, Stemp M (2001) Electrochim Acta 46:3913

    Article  CAS  Google Scholar 

  112. Virtanen S, Milošev I, Gomez-Barrena E, Trebše R, Salo J, Konttinen YT (2008) Acta Biomater 4:468

    Article  CAS  Google Scholar 

  113. Contu F, Elsener B, Böhni H (2003) J Electrochem Soc 150:B419

    Article  CAS  Google Scholar 

  114. Hiromoto S, Onodera E, Chiba A, Asami K, Hanawa T (2005) Biomaterials 26:4912

    Article  CAS  Google Scholar 

  115. Igual Muňoz A, Mischler S (2011) J Mater Sci Mater Med 22:437

    Article  CAS  Google Scholar 

  116. Mischler S (2008) Tribol Int 41:573

    Article  CAS  Google Scholar 

  117. Igual Muňoz A, Casabán Julián L (2010) Electrochim Acta 55:5428

    Article  CAS  Google Scholar 

  118. Casabán Julián L, Igual Muňoz A (2011) Tribol Int 44:318

    Article  CAS  Google Scholar 

  119. Yan Y, Neville A, Dowson D (2007) Tribol Int 40:1492

    Article  CAS  Google Scholar 

  120. Yan Y, Neville A, Dowson D, Williams S (2006) Tribol Int 39:1509

    Article  CAS  Google Scholar 

  121. Yan Y, Neville A, Dowson D (2006) J Phys D Appl Phys 39:3206

    Article  CAS  Google Scholar 

  122. Sun D, Wharton JA, Wood RJK, Ma L, Rainforth WM (2009) Tribol Int 42:99

    Article  CAS  Google Scholar 

  123. Band T, Metcalf J, Jones H (2001) J Bone Joint Surg 86-B:402

    Google Scholar 

  124. Bücher R, Fisher A (2003) Materialwissenschaft Werkstofftechnik 234:966

    Article  CAS  Google Scholar 

  125. Wimmer MA, Loos J, Nassutt R, Heitkemper M, Fischer A (2001) Wear 250:250

    Article  Google Scholar 

  126. Milošev I, Remškar M (2009) J Biomed Mater Res A 91A:1100

    Article  CAS  Google Scholar 

  127. Bücher R, Tager G, Dudinski W, Gleising B, Wimmer MA, Fisher A (2005) J Biomed Mater Res B 72:206

    Article  CAS  Google Scholar 

  128. Svanson SAV, Freeman MAR (1977) The scientific basis of joint replacement. Wiley, New York

    Google Scholar 

  129. Salinas-Rodriguez A (1999) ASTM Spl Techn Publ 1365:108

    Google Scholar 

  130. Levitas VI (2004) Europhys Lett 66:687

    Article  CAS  Google Scholar 

  131. Scales JT, Winter GD, Shirley HT (1959) J Bone Joint Surg 41-B:810

    Google Scholar 

  132. Scales JT (1971) J Bone Joint Surg Br 53-B:344

    Google Scholar 

  133. Gruen TA, Amstutz HC (1975) J Biomed Mater Res 9:465

    Article  CAS  Google Scholar 

  134. Reclaru L, Lerf R, Eschler P-Y, Blatter A, Meyer J-M (2002) Biomaterials 23:3479

    Article  CAS  Google Scholar 

  135. Serhan H, Slivka M, Albert T, Kwak SD (2004) Spine J 4:379

    Article  Google Scholar 

  136. Collier JP, Surprenant VA, Jensen RE, Mayor MB, Suprenant HP (1991) Clin Orthop Relat Res 271:305

    Google Scholar 

  137. Collier JP, Surprenant VA, Jensen RE, Mayor MB, Suprenant HP (1992) J Bone Joint Surg 74-B:511

    Google Scholar 

  138. Gilbert JL, Buckley CA, Jacobs JJ (1993) J Biomed Mater Res 27:1533

    Article  CAS  Google Scholar 

  139. Gilbert JL, Jacobs JJ (1997) The mechanical and electrochemical processes associated with taper fretting crevice corrosion: a review. In: Marlowe DE, Parr JE, Mayor MB (eds) Modularity of orthopaedic implants. ASTM publication, STP 1301, West Conhohocken, PA, p 45

    Google Scholar 

  140. Goldberg JR, Gilbert JL, Jacobs JJ, Bauer TW, Paprosky W, Leurgans S (2002) Clin Orthop Relat Res 401:149

    Article  Google Scholar 

  141. Cook SD, Barrack RL, Baffes GC, Clemow AJT, Serekian P, Dong N, Kester M (1994) Clin Orthop Relat Res 298:80

    Google Scholar 

  142. Bobyn JD, Duyovne AR, Krygier JJ, Young DL (1993) In: Morrey BF (ed) Biological, material, and mechanical considerations of joint replacement. Raven, New York, p 287

    Google Scholar 

  143. Mathiesen EB, Urban Lindgren J, Blomgren GA, Reinholt FP (1991) J Bone Joint Surg Br 73-B:569

    Google Scholar 

  144. McKellop HA, Sarmiento A, Brien W, Park SH (1992) J Arthroplasty 7:291

    Article  CAS  Google Scholar 

  145. Gilbert JL, Buckley CA, Jacobs JJ, Bertin KC, Zernich MR (1994) J Bone Joint Surg 76-A:110

    Google Scholar 

  146. Brown SA, Flemming CAC, Kawalec JS, Placko HE, Vassaux C, Merritt K, Payer JH, Kraay MJ (1995) J Appl Biomater 6:19

    Article  CAS  Google Scholar 

  147. Viceconti M, Baleani M, Squarzoni S, Toni A (1997) J Biomed Mater Res 35:207

    Article  CAS  Google Scholar 

  148. Salvati EA, Lieberman JR, Huk OL, Evans BG (1995) Clin Orthop Relat Res 319:85

    Google Scholar 

  149. Urban RM, Jacobs JJ, Gilbert JL, Rice SB, Justy M, Bragdon CR, Galante JO (1997) Characterization of solid products of corrosion generated by modular-head femoral stems of different designs and materials. In: Marlowe DE, Parr JE, Mayor MB (eds) Modularity of orthopaedic implants. ASTM publication, STP 1301, West Conhohocken, PA, p 33

    Google Scholar 

  150. Urban RM, Jacobs JJ, Gilbert JL, Galante JO (1994) J Bone Joint Surg 76-B:1345

    Google Scholar 

  151. Huber M, Reinisch G, Trettenhahn G, Zweymüller K, Lintner F (2009) Acta Biomater 5:172

    Article  CAS  Google Scholar 

  152. McCarthy JC, Bono JV, O’Donnell PJ (1997) Clin Orthop Relat Res 344:162

    Article  Google Scholar 

  153. Yerby SA, Taylor JK, Park J, Shackelford JF (1996) J Arthroplasty 11:157

    Article  CAS  Google Scholar 

  154. Lieberman JR, Rimnac CM, Garvin KL, Klein RW, Salvati EA (1994) Clin Orthop Relat Res 300:162

    Google Scholar 

  155. Kop AM, Swarts E (2009) J Arthroplasty 24:1019

    Article  Google Scholar 

  156. Willert H-G, Brobäck L-G, Buchhorn GH, Jensen PH, Köster G, Lang I, Ochsner P, Schenk R (1996) Clin Orthop Relat Res 333:51

    Google Scholar 

  157. Hodgson AW, Mischler S, Von Rechenberg B, Virtanen S (2007) Proc IMechE H 221:291

    Google Scholar 

Download references

Acknowledgments

The valuable technical assistance of Mr. Gregor Žerjav is gratefully acknowledged. High-resolution TEM experiments on CoCr-based particles were carried out by Dr. Maja Remškar. The author thanks the orthopedic surgeons at the Valdoltra Orthopedic Hospital for collaboration on retrieval studies. The financial support by the Slovene Research Agency is greatly appreciates (grants No. P2-0148 and J1-2243).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Milošev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Milošev, I. (2012). CoCrMo Alloy for Biomedical Applications. In: Djokić, S. (eds) Biomedical Applications. Modern Aspects of Electrochemistry, vol 55. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3125-1_1

Download citation

Publish with us

Policies and ethics