Skip to main content

Tissue Engineering in the Development of Replacement Technologies

  • Chapter
New Technologies for Toxicity Testing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 745))

Abstract

The field of tissue engineering is generating new scaffolds, bioreactors and methods for stimulating cells within complex cultures, with the aim of recreating the conditions under which cells form functional tissues. Hitherto, the primary focus of this field has been on clinical applications. However, there are many methods of in vitro tissue engineering that represent new opportunities in 3D cell culture and could be the basis for new replacement methods that either replace the use of a tissue isolated from an animal or the use of a living animal. This chapter presents an overview of tissue engineering and provides tissue-specific examples of recent advances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Freed LE, Vunjaknovakovic G, Langer R. Cultivation of cell-polymer cartilage implants in bioreactors. J Cell Biochem 1993; 51(3):257–264.

    Article  PubMed  CAS  Google Scholar 

  2. Langer R, Vacanti JP. Tissue engineering. Science 1993; 260(5110):920–926.

    Article  PubMed  CAS  Google Scholar 

  3. Ziegler T, Nerem RM. Tissue engineering a blood vessel—Regulation of vascular biology by mechanical stresses. J Cell Biochem 1994; 56(2):204–209.

    Article  PubMed  CAS  Google Scholar 

  4. Koller MR, Palsson BO. Tissue engineering—Reconstitution of human hematopoiesis ex-vivo. Biotechnol Bioeng 1993; 42(8):909–930.

    Article  PubMed  CAS  Google Scholar 

  5. Freed LE, Vunjaknovakovic G. Cultivation of cell-polymer tissue constructs in simulated microgravity. Biotechnol Bioeng 1995; 46(4):306–313.

    Article  PubMed  CAS  Google Scholar 

  6. Dipersio CM, Shah S, Hynes RO. Alpha-3a-beta-1 integrin localizes to focal contacts in response to diverse extracellular-matrix proteins. J Cell Sci 1995; 108:2321–2336.

    PubMed  CAS  Google Scholar 

  7. Massia SP, Hubbell JA. Vascular endothelial cell adhesion and spreading promoted by the peptide Redv of the Iiics region of plasma fibronectin is mediated by integrin alpha-4-beta-1. J Biol Chem 1992; 267(20):14019–14026.

    PubMed  CAS  Google Scholar 

  8. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005; 23(1):47–55.

    Article  PubMed  CAS  Google Scholar 

  9. Knight MM, Bomzon Z, Kimmel E et al. Chondrocyte deformation induces mitochondrial distortion and heterogeneous intracellular strain fields. Biomech Model Mechanobiol 2006; 5(2-3):180–191.

    Article  PubMed  CAS  Google Scholar 

  10. Nahmias Y, Berthiaume F, Yarmush ML. Integration of technologies for hepatic tissue engineering. Adv Biochem Eng Biotechnol 2007; 103:309–329.

    PubMed  Google Scholar 

  11. Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds and signaling: Tissue architecture regulates development, homeostasis and cancer. Annu Rev Cell Dev Bi 2006; 22:287–309.

    Article  CAS  Google Scholar 

  12. Draize JH, Woodard GK, Calvery HO. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther 1944; 82:377–390.

    CAS  Google Scholar 

  13. Netzlaff F, Lehr CM, Wertz PW et al. The human epidermis models EpiSkin, SkinEthic and EpiDerm: an evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity and substance transport. Eur J Pharm Biopharm 2005; 60(2):167–178.

    Article  PubMed  CAS  Google Scholar 

  14. Tinois E, Tiollier J, Gaucherand M et al. In vitro and posttransplantation differentiation of human keratinocytes grown on the human type IV collagen film of a bilayered dermal substitute. Exp Cell Res 1991; 193(2):310–319.

    Article  PubMed  CAS  Google Scholar 

  15. Poumay Y, Coquette A. Modelling the human epidermis in vitro: tools for basic and applied research. Arch Dermatol Res 2007; 298(8):361–369.

    Article  PubMed  Google Scholar 

  16. Kandarova H, Liebsch M, Schmidt E et al. Assessment of the skin irritation potential of chemicals by using the SkinEthic reconstructed human epidermal model and the common skin irritation protocol evaluated in the ECVAM skin irritation validation study. Altern Lab Anim—ATLA 2006; 34(4):393–406.

    CAS  Google Scholar 

  17. Rosdy M, Clauss LC. Terminal epidermal differentiation of human keratinocytes grown in chemically defined medium on inert filter substrates at the air-liquid interface. J Invest Dermatol 1990; 95(4):409–414.

    Article  PubMed  CAS  Google Scholar 

  18. Gerlach J, Kloppel K, Stoll P et al. Gas-supply across membranes in bioreactors for hepatocyte culture. Artif Organs 1990; 14(5):328–333.

    Article  PubMed  CAS  Google Scholar 

  19. Zeilinger K, Holland G, Sauer IM et al. Time course of primary liver cell reorganization in three-dimensional high-density bioreactors for extracorporeal liver support: An immunohistochemical and ultrastructural study. Tissue Eng 2004; 10(7-8):1113–1124.

    Article  PubMed  CAS  Google Scholar 

  20. Zeilinger K, Sauer IM, Pless G et al. Three-dimensional coculture of primary human liver cells in bioreactors for in vitro drug studies: Effects of the initial cell quality on the long-term maintenance of hepatocyte-specific functions. Altern Lab Anim—ATLA 2002; 30(5):525–538.

    CAS  Google Scholar 

  21. Allen JW, Khetani SR, Bhatia SN. In vitro zonation and toxicity in a hepatocyte bioreactor. Toxicol Sci 2005; 84(1):110–119.

    Article  PubMed  CAS  Google Scholar 

  22. Patel N, Padera R, Sanders GHW et al. Spatially controlled cell engineering on biodegradable polymer surfaces. FASEB J 1998; 12(14):1447–1454.

    PubMed  CAS  Google Scholar 

  23. Moore K, Macsween M, Shoichet M. Immobilized concentration gradients of neurotrophic factors guide neurite outgrowth of primary neurons in macroporous scaffolds. Tissue Eng 2006; 12(2):267–278.

    Article  PubMed  CAS  Google Scholar 

  24. Radisic M, Park H, Chen F et al. Bimirnetic approach to cardiac tissue engineering: Oxygen carriers and channeled scaffolds. Tissue Eng 2006; 12(8):2077–2091.

    Article  PubMed  CAS  Google Scholar 

  25. L’Heureux N, Dusserre N, Konig G et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 2006; 12(3):361–365.

    Article  PubMed  Google Scholar 

  26. Levenberg S, Rouwkema J, Macdonald M et al. Engineering vascularized skeletal muscle tissue. Nat Biotechnol 2005; 23(7):879–884.

    Article  PubMed  CAS  Google Scholar 

  27. Vacanti JP. Tissue and organ engineering: Can we build intestine and vital organs? J Gastrointest Surg 2003; 7(7):831–835.

    Article  PubMed  Google Scholar 

  28. Fuchs JR, Nasseri BA, Vacanti JP. Tissue engineering: A 21st century solution to surgical reconstruction. Ann Thorac Surg 2001; 72(2):577–591.

    Article  PubMed  CAS  Google Scholar 

  29. Sato M, Ando N, Ozawa S et al. Artificial esophagus. Porous Materials for Tissue Engineering 1997; 250:105–114.

    CAS  Google Scholar 

  30. Choi RS, Riegler M, Pothoulakis C et al. Studies of brush border enzymes, basement membrane components and electrophysiology of tissue-engineered neointestine. J Pediatr Surg 1998; 33(7):991–996.

    Article  PubMed  CAS  Google Scholar 

  31. Grikscheit TC. Tissue engineering of the gastrointestinal tract for surgical replacement: a nutrition tool of the future? Proc Nutr Soc 2003; 62(3):739–743.

    Article  PubMed  Google Scholar 

  32. Hori Y, Nakamura T, Matsumoto K et al. Experimental study on in situ tissue engineering of the stomach by an acellular collagen sponge scaffold graft. ASAIO J 2001; 47(3):206–210.

    Article  PubMed  CAS  Google Scholar 

  33. Whitcher JP, Srinivasan M, Upadhyay MP. Corneal blindness: a global perspective. B World Health Organ 2001; 79(3):214–221.

    CAS  Google Scholar 

  34. Sumide T, Nishida K, Yamato M et al. Functional human corneal endothelial cell sheets harvested from temperature-responsive culture surfaces. FASEB J 2005; 19(14):392.

    Google Scholar 

  35. Nishida K, Yamato M, Hayashida Y et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. New Engl J Med 2004; 351(12):1187–1196.

    Article  PubMed  CAS  Google Scholar 

  36. Doillon CJ, Watsky MA, Hakim M et al. A collagen-based scaffold for a tissue engineered human cornea: Physical and physiological properties. Int J Artif Organs 2003; 26(8):764–773.

    PubMed  CAS  Google Scholar 

  37. Germain L, Carrier P, Auger FA et al. Can we produce a human corneal equivalent by tissue engineering? Prog Retin Eye Res 2000; 19(5):497–527.

    Article  PubMed  CAS  Google Scholar 

  38. Griffith M, Osborne R, Munger R et al. Functional human corneal equivalents constructed from cell lines. Science 1999; 286(5447):2169–2172.

    Article  PubMed  CAS  Google Scholar 

  39. Schneider AI, Maier-Reif K, Graeve T. Constructing an in vitro cornea from cultures of the three specific corneal cell types. In Vitro Cell Dev 1999; 35(9):515–526.

    Article  CAS  Google Scholar 

  40. Liu Y, Griffith M, Watsky MA et al. Properties of porcine and recombinant human collagen matrices for optically clear tissue engineering applications. Biomacromolecules 2006; 7(6):1819–1828.

    Article  PubMed  CAS  Google Scholar 

  41. Li FF, Carlsson D, Lohmann C et al. Cellular and nerve regeneration within a biosynthetic extracellular matrix for corneal transplantation. Proc Natl Acad Sci USA 23 2003; 100(26):15346–15351.

    Article  CAS  Google Scholar 

  42. Wadsworth SJ, Nijmeh HS, Hall IP. Glucocorticoids increase repair potential in a novel in vitro human airway epithelial wounding model. J Clin Immunol 2006; 26(4):376–387.

    Article  PubMed  CAS  Google Scholar 

  43. Powers MJ, Janigian DM, Wack KE et al. Functional behavior of primary rat liver cells in a three-dimensional perfused microarray bioreactor. Tissue Eng 2002; 8:499–513.

    Article  PubMed  Google Scholar 

  44. Spielmann H, Hoffmann S, Liebsch M et al. The ECVAM International validation study on in vitro tests for acute skin irritation: report on the validity of the EPISKIN and EpiDerm assays and on the skin integrity function test. Altern Lab Anim—ATLA 2007; 35(6):559–601.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Shakesheff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Shakesheff, K.M., Rose, F.R.A.J. (2012). Tissue Engineering in the Development of Replacement Technologies. In: Balls, M., Combes, R.D., Bhogal, N. (eds) New Technologies for Toxicity Testing. Advances in Experimental Medicine and Biology, vol 745. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3055-1_4

Download citation

Publish with us

Policies and ethics