Skip to main content

Cortical Processing of Music

  • Chapter
  • First Online:
The Human Auditory Cortex

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 43))

Abstract

Here’s a commonplace experience: you are walking in a shopping mall when you hear a tune being played in the background. It takes you a moment but then you realize that it is a song that you last heard 20 years ago, which has now been redone—perhaps unfortunately—as an advertising jingle. Although the aesthetic experience associated with this little vignette may not be high, the ease with which our nervous system can carry out this kind of analysis belies the complexity involved. Consider: the music you hear is embedded in a background of irrelevant noise, so you need first to strip it away; you recognize the pattern of sound as the tune you are familiar with, even though none of the actual elements reaching your ear are the same as what you had originally encoded—the tempo, musical key, and instrument timbres may all be different; if the song has lyrics you must also separate the tonal component from the speech component to process each of them; the experience may also lead to retrieval of memories associated with the song; you could also begin to sing along with it, which means you must convert the information contained in the sound waves you hear to a set of motor commands that will produce similar sound waves from your vocal musculature; finally the song may lead you to experience emotion, which could range from annoyance to pleasure. The mechanisms that allow this complex cognitive chain of events to occur are far from being fully understood. This chapter aims to give readers an overview of what is known about the role of auditory cortex in processing and production of musical sounds, and an indication of the many open questions that remain. Understanding the neural and cognitive mechanisms involved in tonal and musical processes will yield insights into fundamental aspects of neural organization and function that would otherwise be difficult to obtain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alain, C., Arnott, S. R., Hevenor, S., Graham, S., & Grady, C. L. (2001). “What” and “where” in the human auditory system. Proceedings of the National Academy of Sciences of the USA, 98(21), 12301–12306.

    PubMed  CAS  Google Scholar 

  • Anderson, B., Southern, B. D., & Powers, R. E. (1999). Anatomic asymmetries of the posterior superior temporal lobes: A postmortem study. Neuropsychiatry, Neuropsychology, & Behavioral Neurology, 12, 247–254.

    CAS  Google Scholar 

  • Attneave, F., & Olson, R. K. (1971). Pitch as a medium: A new approach to psychophysical scaling. American Journal of Psychology, 84, 147–166.

    PubMed  CAS  Google Scholar 

  • Ayotte, J., Peretz, I., & Hyde, K. (2002). Congenital amusia: A group study of adults afflicted with a music-specific disorder. Brain, 125(2), 238–251.

    PubMed  Google Scholar 

  • Bailey, J., & Penhune, V. (2010). Rhythm synchronization performance and auditory working memory in early- and late-trained musicians. Experimental Brain Research, 204, 91–101.

    Google Scholar 

  • Bangert, M. W., & Altenmüller, E. O. (2003). Mapping perception to action in piano practice: A longitudinal DC-EEG study. BMC Neuroscience, 4(1), 26.

    PubMed  Google Scholar 

  • Belin, P., & Zatorre, R. J. (2000). ‘What’, ‘where‘ and ‘how’ in auditory cortex. Nature Neuroscience, 3(10), 965–966.

    PubMed  CAS  Google Scholar 

  • Bendor, D., & Wang, X. (2005). The neuronal representation of pitch in primate auditory cortex. Nature, 436(7054), 1161.

    PubMed  CAS  Google Scholar 

  • Bendor, D., & Wang, X. (2006). Cortical representations of pitch in monkeys and humans. Current Opinion in Neurobiology, 16(4), 391–399.

    PubMed  CAS  Google Scholar 

  • Bengtsson, S., Ehrsson, H., Forssberg, H., & Ullén, F. (2004). Dissociating brain regions controlling the temporal and ordinal structure of learned movement sequences. European Journal of Neuroscience, 19, 2591–2602.

    PubMed  Google Scholar 

  • Bermudez, P., Evans, A. C., Lerch, J. P., & Zatorre, R. J. (2009). Neuro-anatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cerebral Cortex, 19, 1583–1596.

    PubMed  Google Scholar 

  • Beurze, S. M., de Lange, F. P., Toni, I., & Medendorp, W. P. (2007). Integration of target and effector information in the human brain during reach planning. Journal of Neurophysiology, 97(1), 188–199.

    PubMed  CAS  Google Scholar 

  • Bidelman, G. M., & Krishnan, A. (2009). Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem. Journal of Neuroscience, 29(42), 13165–13171.

    PubMed  CAS  Google Scholar 

  • Binder, J., Frost, J., Hammeke, T., Bellgowan, P., Springer, J., Kaufman, J., & Possing, J. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex, 10, 512–528.

    PubMed  CAS  Google Scholar 

  • Boemio, A., Fromm, S., Braun, A., & Poeppel, D. (2005). Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nature Neuroscience, 8(3), 389.

    PubMed  CAS  Google Scholar 

  • Bosnyak, D. J., Eaton, R. A., & Roberts, L. E. (2004). Distributed auditory cortical representations are modified when non-musicians are trained at pitch discrimination with 40 Hz amplitude modulated tones. Cerebral Cortex, 14(10), 1088–1099.

    PubMed  Google Scholar 

  • Brechmann, A., & Scheich, H. (2005). Hemispheric shifts of sound representation in auditory cortex with conceptual listening. Cerebral Cortex, 15(5), 578–587.

    PubMed  Google Scholar 

  • Brown, M., Irvine, D. R. F., & Park, V. N. (2004a). Perceptual learning on an auditory frequency discrimination task by cats: Association with changes in primary auditory cortex. Cerebral Cortex, 14(9), 952–965.

    PubMed  Google Scholar 

  • Brown, S., Martinez, M. J., Hodges, D. A., Fox, P. T., & Parsons, L. M. (2004b). The song system of the human brain. Brain Research: Cognitive Brain Research, 20(3), 363–375.

    PubMed  Google Scholar 

  • Buonomano, D., & Merzenich, M. (1998). Cortical plasticity: From synapses to maps. Annual Review of Neuroscience, 21, 149–186.

    PubMed  CAS  Google Scholar 

  • Cavada, C., & Goldman-Rakic, P. S. (1989). Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. Journal of Comparative Neurology, 287(4), 422–445.

    PubMed  CAS  Google Scholar 

  • Chait, M., Poeppel, D., & Simon, J. Z. (2006). Neural response correlates of detection of monaurally and binaurally created pitches in humans. Cerebral Cortex, 16(6), 835–848.

    PubMed  Google Scholar 

  • Chance, S. A., Casanova, M. F., Switala, A. E., & Crow, T. J. (2006). Minicolumnar structure in Heschl’s gyrus and planum temporale: Asymmetries in relation to sex and callosal fiber number. Neuroscience, 143(4), 1041–1050.

    PubMed  CAS  Google Scholar 

  • Chen, J. L., Zatorre, R. J., & Penhune, V. B. (2006). Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. NeuroImage, 32(4), 1771–1781.

    PubMed  Google Scholar 

  • Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008a). Listening to musical rhythms recruits motor regions of the brain. Cerebral Cortex, 18(12), 2844–2854.

    PubMed  Google Scholar 

  • Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2008b). Moving on time: Brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training. Journal of Cognitive Neuroscience, 20(2), 226–239.

    PubMed  Google Scholar 

  • Chen, J. L., Penhune, V. B., & Zatorre, R. J. (2009). The role of auditory and premotor cortex in sensorimotor transformations. Annals of the New York Academy of Sciences, 1169, 15–34.

    PubMed  Google Scholar 

  • Clarke, S., Bellmann Thiran, A., Maeder, P., Adriani, M., Vernet, O., Regli, L., et al. (2002). What and where in human audition: Selective deficits following focal hemispheric lesions. Experimental Brain Research, 147(1), 8–15.

    Google Scholar 

  • Critchley, M., & Henson, R. A., Eds. (1977). Music and the brain: Studies in the neurology of music. London: Heinemann.

    Google Scholar 

  • Culham, J. C., Cavina-Pratesi, C., & Singhal, A. (2006). The role of parietal cortex in visuomotor control: What have we learned from neuroimaging? Neuropsychologia, 44, 2668–2684.

    PubMed  Google Scholar 

  • Cupchik, G. C., Phillips, K., & Hill, D. S. (2001). Shared processes in spatial rotation and musical permutation. Brain and Cognition, 46(3), 373–382.

    PubMed  CAS  Google Scholar 

  • Dahmen, J. C., & King, A. J. (2007). Learning to hear: Plasticity of auditory cortical processing. Current Opinion in Neurobiology, 17(4), 456–464.

    PubMed  CAS  Google Scholar 

  • Dalla Bella, S., Giguere, J. F., & Peretz, I. (2009). Singing in congenital amusia. Journal of the Acoustical Society of America, 126(1), 414–424.

    PubMed  Google Scholar 

  • Dehaene-Lambertz, G., Pallier, C., Serniclaes, W., Sprenger-Charolles, L., Jobert, A., & Dehaene, S. (2005). Neural correlates of switching from auditory to speech perception. NeuroImage, 24(1), 21–33.

    PubMed  Google Scholar 

  • Dorsaint-Pierre, R., Penhune, V. B., Watkins, K. E., Neelin, P., Lerch, J. P., Bouffard, M., & Zatorre, R. J. (2006). Asymmetries of the planum temporale and Heschl’s gyrus: Relationship to language lateralization. Brain, 129(5), 1164–1176.

    PubMed  Google Scholar 

  • Douglas, K. M., & Bilkey, D. K. (2007). Amusia is associated with deficits in spatial processing. Nature Neuroscience, 10(7), 915–921.

    PubMed  CAS  Google Scholar 

  • Dowling, W. J. (1978). Scale and contour: Two components of a theory of memory for melodies. Psychological Review, 85, 341–354.

    Google Scholar 

  • Dowling, W. J., & Harwood, D. (1986). Music cognition. Orlando, FL: Academic Press.

    Google Scholar 

  • Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427, 311–312.

    PubMed  CAS  Google Scholar 

  • Drayna, D., Manichaikul, A., de Lange, M., Snieder, H., & Spector, T. (2001). Genetic correlates of musical pitch recognition in humans. Science, 291, 1969–1972.

    PubMed  CAS  Google Scholar 

  • Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270, 305–307.

    PubMed  CAS  Google Scholar 

  • Foster, N. E. V., & Zatorre, R. J. (2010a). Cortical structure predicts success in performing musical transformation judgments. NeuroImage, 53(1), 26–36.

    PubMed  Google Scholar 

  • Foster, N. E. V., & Zatorre, R. J. (2010b). A role for the intraparietal sulcus in transforming musical pitch information. Cerebral Cortex, 20(6), 1350–1359.

    PubMed  Google Scholar 

  • Foxton, J. M., Dean, J. L., Gee, R., Peretz, I., & Griffiths, T. D. (2004). Characterization of deficits in pitch perception underlying ‘tone deafness’. Brain, 127(4), 801–810.

    PubMed  Google Scholar 

  • Frey, S., Campbell, J. S. W., Pike, G. B., & Petrides, M. (2008). Dissociating the human language pathways with high angular resolution diffusion fiber tractography. Journal of Neuroscience, 28, 11435–11444.

    PubMed  CAS  Google Scholar 

  • Friederici, A. D., Ruschemeyer, S.-A., Hahne, A., & Fiebach, C. J. (2003). The role of left inferior frontal and superior temporal cortex in sentence comprehension: Localizing syntactic and semantic processes. Cerebral Cortex, 13(2), 170–177.

    PubMed  Google Scholar 

  • Fujioka, T., Trainor, L. J., Ross, B., Kakigi, R., & Pantev, C. (2005). Automatic encoding of polyphonic melodies in musicians and nonmusicians. Journal of Cognitive Neuroscience, 17, 1578–1592.

    PubMed  Google Scholar 

  • Fujioka, T., Ross, B., Kakigi, R., Pantev, C., & Trainor, L. J. (2006). One year of musical training affects development of auditory cortical-evoked fields in young children. Brain, 129(10), 2593–2608.

    PubMed  Google Scholar 

  • Gaab, N., Gaser, C., & Schlaug, G. (2006). Improvement-related functional plasticity following pitch memory training. NeuroImage, 31(1), 255–263.

    PubMed  Google Scholar 

  • Galaburda, A., & Sanides, F. (1980). Cytoarchitectonic organization of the human auditory cortex. Journal of Comparative Neurology, 190(3), 597–610.

    PubMed  CAS  Google Scholar 

  • Galaburda, A. M., Sherman, G. F., Rosen, G. D., Aboitiz, F., & Geschwind, N. (1985). Developmental dyslexia: Four consecutive patients with cortical anomalies. Annals of Neurology, 18(2), 222–233.

    PubMed  CAS  Google Scholar 

  • Galuske, R., Schlote, W., Bratzke, H., & Singer, W. (2000). Interhemispheric asymmetries of the modular structure in human temporal cortex. Science, 289, 1946–1949.

    PubMed  CAS  Google Scholar 

  • Gaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. Journal of Neuroscience, 23(27), 9240–9245.

    PubMed  CAS  Google Scholar 

  • Giard, M. H., Lavikahen, J., Reinikainen, K., Perrin, F., Bertrand, O., Pernier, J., & Näätänen, R. (1995). Separate representation of stimulus frequency, intensity, and duration in auditory sensory memory: An event-related potential and dipole-model analysis. Journal of Cognitive Neuroscience, 7(2), 133–143.

    Google Scholar 

  • Giraud, A. L., Kleinschmidt, A., Poeppel, D., Lund, T. E., Frackowiak, R. S., & Laufs, H. (2007). Endogenous cortical rhythms determine cerebral specialization for speech perception and production. Neuron, 56(6), 1127–1134.

    PubMed  CAS  Google Scholar 

  • Golestani, N., & Zatorre, R. J. (2004). Learning new sounds of speech: Reallocation of neural substrates. NeuroImage, 21, 494–506.

    PubMed  Google Scholar 

  • Golestani, N., Molko, N., Dehaene, S., LeBihan, D., & Pallier, C. (2007). Brain structure predicts the learning of foreign speech sounds. Cerebral Cortex, 17(3), 575–582.

    PubMed  Google Scholar 

  • Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25.

    PubMed  CAS  Google Scholar 

  • Grefkes, C., & Fink, G. R. (2005). The functional organization of the intraparietal sulcus in humans and monkeys. Journal of Anatomy, 207, 3–17.

    PubMed  Google Scholar 

  • Griffiths, T. D., & Warren, J. D. (2002). The planum temporale as a computational hub. Trends in Neurosciences, 25(7), 348–353.

    PubMed  CAS  Google Scholar 

  • Griffiths, T. D., Büchel, C., Frackowiak, R. S. J., & Patterson, R. D. (1998). Analysis of temporal structure in sound by the human brain. Nature Neuroscience, 1, 422–427.

    PubMed  CAS  Google Scholar 

  • Griffiths, T. D., Johnsrude, I. S., Dean, J. L., & Green, G. G. R. (1999). A common neural substrate for the analysis of pitch and duration pattern in segmented sound? Neuroreport, 10, 3825–3830.

    PubMed  CAS  Google Scholar 

  • Griffiths, T. D., Kumar, S., Sedley, W., Nourski, K. V., Kawasaki, H., Oya, H., et al. (2010). Direct recordings of pitch responses from human auditory cortex. Current Biology, 20(12), 1128–1132.

    PubMed  CAS  Google Scholar 

  • Gutschalk, A., Patterson, R. D., Rupp, A., Uppenkamp, S., & Scherg, M. (2002). Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex. NeuroImage, 15(1), 207–216.

    PubMed  Google Scholar 

  • Gutschalk, A., Patterson, R. D., Scherg, M., Uppenkamp, S., & Rupp, A. (2004). Temporal dynamics of pitch in human auditory cortex. NeuroImage, 22(2), 755–766.

    PubMed  Google Scholar 

  • Hackett, T. A., Stepniewska, I., & Kaas, J. H. (1998). Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. Journal of Comparative Neurology, 394(4), 475–495.

    PubMed  CAS  Google Scholar 

  • Hackett, T. A., Stepniewska, I., & Kaas, J. H. (1999). Prefrontal connections of the parabelt auditory cortex in macaque monkeys. Brain Research, 817(1–2), 45–58.

    PubMed  CAS  Google Scholar 

  • Hall, D. A., & Plack, C. J. (2009). Pitch processing sites in the human auditory brain. Cerebral Cortex, 19(3), 576–585.

    PubMed  Google Scholar 

  • Hall, D. A., Johnsrude, I. S., Haggard, M. P., Palmer, A. R., Akeroyd, M. A., & Summerfield, A. Q. (2002). Spectral and temporal processing in human auditory cortex. Cerebral Cortex, 12(2), 140–149.

    PubMed  Google Scholar 

  • Hall, D. A., Edmondson-Jones, A. M., & Fridriksson, J. (2006). Periodicity and frequency coding in human auditory cortex. European Journal of Neuroscience, 24(12), 3601–3610.

    PubMed  Google Scholar 

  • Hart, H. C., Palmer, A. R., & Hall, D. A. (2003). Amplitude and frequency-modulated stimuli activate common regions of human auditory cortex. Cerebral Cortex, 13, 773–781.

    PubMed  Google Scholar 

  • Herholz, S. C., Lappe, C., Knief, A., & Pantev, C. (2008). Neural basis of music imagery and the effect of musical expertise. European Journal of Neuroscience, 28(11), 2352–2360.

    PubMed  Google Scholar 

  • Hickok, G., & Poeppel, D. (2000). Towards a functional neuroanatomy of speech perception. Trends in Cognitive Sciences, 4(4), 131–138.

    PubMed  Google Scholar 

  • Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92(1–2), 67–99.

    PubMed  Google Scholar 

  • Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews: Neuroscience, 8(5), 393–402.

    PubMed  CAS  Google Scholar 

  • Hillyard, S., Hink, R., Schwent, V., & Picton, T. (1973). Electrical signs of selective attention in the human brain. Science, 182, 177–180.

    PubMed  CAS  Google Scholar 

  • Huron, D. (2006). Sweet anticipation: Music and the psychology of expectaction. Cambridge, MA: MIT Press.

    Google Scholar 

  • Hutchins, S., Zarate, J. M., Zatorre, R. J., & Peretz, I. (2010). An acoustical study of vocal pitch matching in congenital amusia. Journal of the Acoustical Society of America, 127(1), 504–512.

    PubMed  Google Scholar 

  • Hutsler, J., & Gazzaniga, M. (1996). Acetylcholinesterase staining in human auditory and language cortices—regional variation of structural features. Cerebral Cortex, 6, 260–270.

    PubMed  CAS  Google Scholar 

  • Hyde, K. L., & Peretz, I. (2004). Brains that are out of tune but in time. Psychological Science, 15, 356–360.

    PubMed  Google Scholar 

  • Hyde, K. L., Zatorre, R. J., Griffiths, T. D., Lerch, J. P., & Peretz, I. (2006). Morphometry of the amusic brain: A two-site study. Brain, 129, 2562–2570.

    PubMed  Google Scholar 

  • Hyde, K. L., Lerch, J. P., Zatorre, R. J., Griffiths, T. D., Evans, A. C., & Peretz, I. (2007). Cortical thickness in congenital amusia: When less is better than more. Journal of Neuroscience, 27(47), 13028–13032.

    PubMed  CAS  Google Scholar 

  • Hyde, K. L., Peretz, I., & Zatorre, R. J. (2008). Evidence for the role of the right auditory cortex in fine pitch resolution. Neuropsychologia, 46(2), 632–639.

    PubMed  Google Scholar 

  • Hyde, K. L., Lerch, J., Norton, A., Forgeard, M., Winner, E., Evans, A. C., & Schlaug, G. (2009). Musical training shapes structural brain development. Journal of Neuroscience, 29(10), 3019–3025.

    PubMed  CAS  Google Scholar 

  • Hyde, K. L., Zatorre, R. J., & Peretz, I. (2011). Functional MRI evidence of an abnormal neural network for pitch processing in congenital amusia. Cerebral Cortex, 21(2), 292–299.

    PubMed  Google Scholar 

  • Irvine, D. R. F. (2007). Auditory cortical plasticity: Does it provide evidence for cognitive processing in the auditory cortex? Hearing Research, 229, 158–170.

    PubMed  Google Scholar 

  • Jamison, H. L., Watkins, K. E., Bishop, D. V. M., & Matthews, P. M. (2006). Hemispheric specialization for processing auditory nonspeech stimuli. Cerebral Cortex, 16(9), 1266–1275.

    PubMed  Google Scholar 

  • Jäncke, L., Gaab, N., Wüstenberg, T., Scheich, H., & Heinze, H.-J. (2001). Short-term functional plasticity in the human auditory cortex: An fMRI study. Cognitive Brain Research, 12, 479–485.

    PubMed  Google Scholar 

  • Johnson, J. A., & Zatorre, R. J. (2005). Attention to simultaneous unrelated auditory and visual events: Behavioral and neural correlates. Cerebral Cortex, 15, 1609–1620.

    PubMed  Google Scholar 

  • Johnsrude, I. S., Penhune, V. B., & Zatorre, R. J. (2000). Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain, 123, 155–163.

    PubMed  Google Scholar 

  • Kaas, J. H., & Hackett, T. A. (2000). Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the USA, 97(22), 11793–11799.

    PubMed  CAS  Google Scholar 

  • Katahira, K., Abla, D., Masuda, S., & Okanoya, K. (2008). Feedback-based error monitoring processes during musical performance: An ERP study. Neuroscience Research, 61(1), 120–128.

    PubMed  Google Scholar 

  • Kelly, A. M. C., & Garavan, H. (2005). Human functional neuroimaging of brain changes associated with practice. Cerebral Cortex, 15, 1089–1102.

    PubMed  Google Scholar 

  • Kleber, B., Birbaumer, N., Veit, R., Trevorrow, T., & Lotze, M. (2007). Overt and imagined singing of an Italian aria. NeuroImage, 36(3), 889–900.

    PubMed  CAS  Google Scholar 

  • Kleber, B., Veit, R., Birbaumer, N., Gruzelier, J., & Lotze, M. (2010). The brain of opera singers: Experience-dependent changes in functional activation. Cerebral Cortex, 20(5), 1144–1152.

    PubMed  CAS  Google Scholar 

  • Knudsen, E. I. (2004). Sensitive periods in the development of the brain and behavior. Journal of Cognitive Neuroscience, 16(8), 1412–1425.

    PubMed  Google Scholar 

  • Koelsch, S., Gunter, T. C., & Friederici, A. D. (2000). Brain indices of music processing: “Nonmusicians” are musical. Journal of Cognitive Neuroscience, 13, 520–541.

    Google Scholar 

  • Koelsch, S., Gunter, T. C., von Cramon, D. Y., Zysset, S., Lohmann, G., & Friederici, A. D. (2002). Bach speaks: A cortical “language-network” serves the processing of music. NeuroImage, 17, 956–966.

    PubMed  Google Scholar 

  • Koelsch, S., Gunter, T., Schröger, E., & Friederici, A. D. (2003). Processing tonal modulations: An ERP study. Journal of Cognitive Neuroscience, 15, 1149–1159.

    PubMed  Google Scholar 

  • Koelsch, S., Fritz, T., Schulze, K., Alsop, D., & Schlaug, G. (2005). Adults and children processing music: An fMRI study. NeuroImage, 25(4), 1068–1076.

    PubMed  Google Scholar 

  • Kral, A., & Eggermont, J. J. (2007). What’s to lose and what’s to learn: Development under auditory deprivation, cochlear implants and limits of cortical plasticity. Brain Research Reviews, 56(1), 259–269.

    PubMed  Google Scholar 

  • Kraus, N., McGee, T., Littman, T., & King, C. (1994). Nonprimary auditory thalamic representation of acoustic change. Journal of Neurophysiology, 72, 1270–1277.

    PubMed  CAS  Google Scholar 

  • Kraus, N., McGee, T., Carrell, T., King, C., Tremblay, K., & Nicol, T. (1995). Central auditory system plasticity associated with speech discrimination training. Journal of Cognitive Neuroscience, 7, 25–32.

    Google Scholar 

  • Krumbholz, K., Patterson, R. D., Seither-Preisler, A., Lammertmann, C., & Lutkenhoner, B. (2003). Neuromagnetic evidence for a pitch processing center in Heschl’s gyrus. Cerebral Cortex, 13(7), 765–772.

    PubMed  CAS  Google Scholar 

  • Krumhansl, C. L. (1990). Cognitive foundations of musical pitch. New York: Oxford University Press.

    Google Scholar 

  • Lahav, A., Saltzman, E., & Schlaug, G. (2007). Action representation of sound: Audiomotor recognition network while listening to newly acquired actions. Journal of Neuroscience, 27(2), 308–314.

    PubMed  CAS  Google Scholar 

  • Lappe, C., Herholz, S. C., Trainor, L. J., & Pantev, C. (2008). Cortical plasticity induced by short-term unimodal and multimodal musical training. Journal of Neuroscience, 28(39), 9632–9639.

    PubMed  CAS  Google Scholar 

  • Large, E. W., & Palmer, C. (2002). Perceiving temporal regularity in music. Cognitive Science, 26, 1–37.

    Google Scholar 

  • Leino, S., Brattico, E., Tervaniemi, M., & Vuust, P. (2007). Representation of harmony rules in the human brain: Further evidence from event-related potentials. Brain Research, 1142, 169–177.

    PubMed  CAS  Google Scholar 

  • Liégeois-Chauvel, C., Peretz, I., Babaï, M., Laguitton, V., & Chauvel, P. (1998). Contribution of different cortical areas in the temporal lobes to music processing. Brain, 121, 1853–1867.

    PubMed  Google Scholar 

  • Loui, P., Guenther, F. H., Mathys, C., & Schlaug, G. (2008). Action-perception mismatch in tone-deafness. Current Biology, 18(8), R331–R332.

    PubMed  CAS  Google Scholar 

  • Loui, P., Alsop, D., & Schlaug, G. (2009). Tone deafness: A new disconnection syndrome? Journal of Neuroscience, 29(33), 10215–10220.

    PubMed  CAS  Google Scholar 

  • Maess, B., Koelsch, S., Gunter, T., & Friederici, A. D. (2001). “Musical syntax” is processed in the area of Broca: An MEG-study. Nature Neuroscience, 4, 540–545.

    PubMed  CAS  Google Scholar 

  • Mandell, J., Schulze, K., & Schlaug, G. (2007). Congenital amusia: An auditory-motor feedback disorder? Restor Neurology and Neuroscience, 25(3–4), 323–334.

    Google Scholar 

  • Margulis, E. H., Mlsna, L. M., Uppunda, A. K., Parrish, T. B., & Wong, P. C. M. (2009). Selective neurophysiologic responses to music in instrumentalists with different listening biographies. Human Brain Mapping, 30(1), 267–275.

    PubMed  Google Scholar 

  • Mars, R. B., Piekema, C., Coles, M. G., Hulstijn, W., & Toni, I. (2007). On the programming and reprogramming of actions. Cerebral Cortex, 17(12), 2972–2979.

    PubMed  Google Scholar 

  • McDermott, J. H., & Oxenham, A. J. (2008). Music perception, pitch, and the auditory system. Current Opinion in Neurobiology, 18(4), 452–463.

    PubMed  CAS  Google Scholar 

  • Menning, H., Roberts, L. E., & Pantev, C. (2000). Plastic changes in the auditory cortex induced by intensive frequency discrimination training. NeuroReport, 11, 817–822.

    PubMed  CAS  Google Scholar 

  • Milner, B. A. (1962). Laterality effects in audition. In V. Mountcastle (Ed.), Interhemispheric relations and cerebral dominance (pp. 177–195). Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  • Molholm, S., Martinez, A., Ritter, W., Javitt, D. C., & Foxe, J. J. (2005). The neural circuitry of pre-attentive auditory change-detection: An fMRI study of pitch and duration mismatch negativity generators. Cerebral Cortex, 15(5), 545–551.

    PubMed  Google Scholar 

  • Morillon, B., Lehongre, K., Frackowiak, R. S., Ducorps, A., Kleinschmidt, A., Poeppel, D., & Giraud, A. L. (2010). Neurophysiological origin of human brain asymmetry for speech and language. Proceedings of the National Academy of Sciences of the USA, 107(43), 18688–18693.

    PubMed  CAS  Google Scholar 

  • Möttönen, R., Calvert, G. A., Jääskeläinen, I. P., Matthews, P. M., Thesen, T., Tuomainen, J., & Sams, M. (2006). Perceiving identical sounds as speech or non-speech modulates activity in the left posterior superior temporal sulcus. NeuroImage, 30, 563–569.

    PubMed  Google Scholar 

  • Münte, T. F., Kohlmetz, C., Nager, W., & Altenmüller, E. (2001). Superior auditory spatial tuning in conductors. Nature, 409, 580.

    PubMed  Google Scholar 

  • Musacchia, G., Sams, M., Skoe, E., & Kraus, N. (2007). Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proceedings of the National Academy of Sciences of the USA, 104(40), 15894–15898.

    PubMed  CAS  Google Scholar 

  • Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 2544–2590.

    PubMed  Google Scholar 

  • Ohnishi, T., Matsuda, H., Asada, T., Aruga, M., Hirakata, M., Nishikawa, M., et al. (2001). Functional anatomy of musical perception in musicians. Cerebral Cortex, 11(8), 754–760.

    PubMed  CAS  Google Scholar 

  • Okamoto, H., Stracke, H., Draganova, R., & Pantev, C. (2009). Hemispheric asymmetry of auditory evoked fields elicited by spectral versus temporal stimulus change. Cerebral Cortex, 19(10), 2290–2297.

    PubMed  Google Scholar 

  • Opitz, B., Rinne, T., Mecklinger, A., von Cramon, D. Y., & Schröger, E. (2002). Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results. NeuroImage, 15(1), 167–174.

    PubMed  Google Scholar 

  • Overath, T., Cusack, R., Kumar, S., Von Kriegstein, K., Warren, J. D., Grube, M., et al. (2007). An information theoretic characterisation of auditory encoding. PLoS Biology, 5(11), 2723–2732.

    CAS  Google Scholar 

  • Overath, T., Kumar, S., von Kriegstein, K., & Griffiths, T. D. (2008). Encoding of spectral correlation over time in auditory cortex. Journal of Neuroscience, 28(49), 13268–13273.

    PubMed  CAS  Google Scholar 

  • Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L., & Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature, 392, 811–814.

    PubMed  CAS  Google Scholar 

  • Pantev, C., Roberts, L., Schulz, M., Engelien, A., & Ross, B. (2001). Timbre-specific enhancement of auditory cortical representations in musicians. NeuroReport, 12, 169–174.

    PubMed  CAS  Google Scholar 

  • Patel, A. (2003). Language, music, syntax and the brain. Nature Neuroscience, 6, 674–681.

    PubMed  CAS  Google Scholar 

  • Patel, A., & Balaban, E. (2001). Human pitch perception is reflected in the timing of stimulus-related cortical activity. Nature Neuroscience, 4, 839–844.

    PubMed  CAS  Google Scholar 

  • Patel, A. D. (2008). Music, language, and the brain. New York: Oxford University Press.

    Google Scholar 

  • Patterson, R. D., Uppenkamp, S., Johnsrude, I. S., & Griffiths, T. D. (2002). The processing of temporal pitch and melody information in auditory cortex. Neuron, 36, 767–776.

    PubMed  CAS  Google Scholar 

  • Penagos, H., Melcher, J. R., & Oxenham, A. J. (2004). A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging. Journal of Neuroscience, 24(30), 6810–6815.

    PubMed  CAS  Google Scholar 

  • Penhune, V. B., Zatorre, R. J., MacDonald, J. D., & Evans, A. C. (1996). Interhemispheric anatomical differences in human primary auditory cortex: Probabilistic mapping and volume measurement from magnetic resonance scans. Cerebral Cortex, 6, 661–672.

    PubMed  CAS  Google Scholar 

  • Penhune, V. B., Cismaru, R., Dorsaint-Pierre, R., Petitto, L. A., & Zatorre, R. J. (2003). The morphometry of auditory cortex in the congenitally deaf measured using MRI. NeuroImage, 20, 1215–1225.

    PubMed  Google Scholar 

  • Peretz, I., & Hyde, K. L. (2003). What is specific to music processing? Insights from congenital amusia. Trends in Cognitive Sciences, 7, 362–367.

    PubMed  Google Scholar 

  • Peretz, I., Brattico, E., & Tervaniemi, M. (2005). Abnormal electrical brain responses to pitch in congenital amusia. Annals of Neurology, 58, 478–482.

    PubMed  Google Scholar 

  • Peretz, I., Cummings, S., & Dubé, M. P. (2007). The genetics of congenital amusia (tone deafness): A family-aggregation study. American Journal of Human Genetics, 81, 582–588.

    PubMed  CAS  Google Scholar 

  • Peretz, I., Brattico, E., Järvenpäa, M., & Tervaniemi, M. (2009). The amusic brain: In tune, out of key, and unaware. Brain, 132, 1277–1286.

    PubMed  Google Scholar 

  • Perry, D. W., Zatorre, R. J., Petrides, M., Alivisatos, B., Meyer, E., & Evans, A. C. (1999). Localization of cerebral activity during simple singing. NeuroReport, 10, 3979–3984.

    PubMed  CAS  Google Scholar 

  • Petkov, C. I., Kang, X., Alho, K., Bertrand, O., Yund, E. W., & Woods, D. L. (2004). Attentional modulation of human auditory cortex. Nature Neuroscience, 7, 658–663.

    PubMed  CAS  Google Scholar 

  • Poeppel, D. (2003). The analysis of speech in different temporal integration windows: Cerebral lateralization as ‘asymmetric sampling in time.’ Speech Communication, 41, 245–255.

    Google Scholar 

  • Puschmann, S., Uppenkamp, S., Kollmeier, B., & Thiel, C. M. (2010). Dichotic pitch activates pitch processing centre in Heschl’s gyrus. NeuroImage, 49(2), 1641–1649.

    PubMed  Google Scholar 

  • Rauschecker, J. P., & Scott, S. K. (2009). Maps and streams in the auditory cortex: Nonhuman primates illuminate human speech processing. Nature Neuroscience, 12(6), 718–724.

    PubMed  CAS  Google Scholar 

  • Rauschecker, J. P., & Tian, B. (2000). Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proceedings of the National Academy of Sciences of the USA, 97(22), 11800–11806.

    PubMed  CAS  Google Scholar 

  • Recanzone, G. H., Guard, D. C., Phan, M. L., & Su, T. K. (2000). Correlation between the activity of single auditory cortical neurons and sound-localization behavior in the macaque monkey. Journal of Neurophysiology, 83(5), 2723–2739.

    PubMed  CAS  Google Scholar 

  • Rinne, T., Degerman, A., & Alho, K. (2005). Superior temporal and inferior frontal cortices are activated by infrequent sound duration decrements: An fMRI study. NeuroImage, 26(1), 66–72.

    PubMed  Google Scholar 

  • Rivier, F., & Clarke, S. (1997). Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: Evidence for multiple auditory areas. NeuroImage, 6(4), 288–304.

    PubMed  CAS  Google Scholar 

  • Romanski, L. M., Tian, B., Fritz, J., Mishkin, M., Goldman-Rakic, P. S., & Rauschecker, J. P. (1999). Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience, 2(12), 1131–1136.

    PubMed  CAS  Google Scholar 

  • Romanski, L. M., Tian, B., Fritz, J. B., Mishkin, M., Goldman-Rakic, P. S., & Rauschecker, J. P. (2000). Reply to “What’, ‘where’ and ‘how’ in auditory cortex.’ Nature Neuroscience, 3(10), 966.

    CAS  Google Scholar 

  • Schlaug, G., Jancke, L., Huang, Y., Staiger, J. F., & Steinmetz, H. (1995). Increased corpus callosum size in musicians. Neuropsychologia, 33(8), 1047–1055.

    PubMed  CAS  Google Scholar 

  • Schlaug, G., Forgeard, M., Zhu, L., Norton, A., Norton, A., & Winner, E. (2009). Training-induced neuroplasticity in young children. Annals of the New York Academy of Sciences 1169, 205–208.

    PubMed  Google Scholar 

  • Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., & Rupp, A. (2002). Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5, 688–694.

    PubMed  CAS  Google Scholar 

  • Schönwiesner, M., & Zatorre, R. J. (2008). Depth electrode recordings show double dissociation between pitch processing in lateral Heschl’s gyrus and sound onset processing in medial Heschl’s gyrus. Experimental Brain Research, 187, 97–105.

    Google Scholar 

  • Schönwiesner, M., Rubsamen, R., & von Cramon, D. Y. (2005). Hemispheric asymmetry for spectral and temporal processing in the human antero-lateral auditory belt cortex. European Journal of Neuroscience, 22(6), 1521–1528.

    PubMed  Google Scholar 

  • Schönwiesner, M., Novitski, N., Pakarinen, S., Carlson, S., Tervaniemi, M., & Näätänen, R. (2007). Heschl’s gyrus, posterior superior temporal gyrus, and mid-ventrolateral prefrontal cortex have different roles in the detection of acoustic changes. Journal of Neurophysiology, 97(3), 2075–2082.

    PubMed  Google Scholar 

  • Schroeder, C., & Foxe, J. (2002). The timing and laminar profile of converging inputs to multisensory areas of the macaque neocortex. Cognitive Brain Research, 14, 187–198.

    PubMed  Google Scholar 

  • Seldon, H. (1981). Structure of human auditory cortex. II: Axon distributions and morphological correlates of speech perception. Brain Research, 229, 295–310.

    PubMed  CAS  Google Scholar 

  • Shepard, R. N. (1982). Geometrical approximations to the structure of musical pitch. Psychological Review, 89(4), 305–333.

    PubMed  CAS  Google Scholar 

  • Sigalovsky, I. S., Fischl, B., & Melcher, J. R. (2006). Mapping an intrinsic MR property of gray matter in auditory cortex of living humans: A possible marker for primary cortex and hemispheric differences. NeuroImage, 32(4), 1524–1537.

    PubMed  Google Scholar 

  • Sluming, V., Barrick, T., Howard, M., Cezayirli, E., Mayes, A., & Roberts, N. (2002). Voxel-based morphometry reveals increased gray matter density in Broca’s area in male symphony orchestra musicians. NeuroImage, 17, 1613–1622.

    PubMed  Google Scholar 

  • Smith, K. R., Hsieh, I.-H., Saberi, K., & Hickok, G. (2010). Auditory spatial and object processing in the human planum temporale: No evidence for selectivity. Journal of Cognitive Neuroscience, 22(4), 632–639.

    PubMed  Google Scholar 

  • Stewart, L., von Kriegstein, K., Warren, J. D., & Griffiths, T. D. (2006). Music and the brain: Disorders of musical listening. Brain, 129(10), 2533–2553.

    PubMed  Google Scholar 

  • Tervaniemi, M., Rytkönen, M., Schröger, E., Ilmoniemi. R. J., & Näätänen, R. (2001). Superior formation of cortical memory traces for melodic patterns in musicians. Learning and Memory, 8, 295–300.

    CAS  Google Scholar 

  • Tervaniemi, M., Szameitat, A. J., Kruck, S., Schroger, E., Alter, K., De Baene, W., & Friederici, A. D. (2006). From air oscillations to music and speech: Functional magnetic resonance imaging evidence for fine-tuned neural networks in audition. Journal of Neuroscience, 26(34), 8647–8652.

    PubMed  CAS  Google Scholar 

  • Thivard, L., Belin, P., Zilbovicius, M., Poline, J., & Samson, Y. (2000). A cortical region sensitive to auditory spectral motion. NeuroReport, 11, 2969–2972.

    PubMed  CAS  Google Scholar 

  • Tian, B., Reser, D., Durham, A., Kustov, A., & Rauschecker, J. P. (2001). Functional specialization in rhesus monkey auditory cortex. Science, 292(5515), 290–293.

    PubMed  CAS  Google Scholar 

  • Tillmann, B., Koelsch, S., Escoffier, N., Bigand, E., Lalitte, P., Friederici, A., & von Cramon, D. (2006). Cognitive priming in sung and instrumental music: Activation of inferior frontal cortex. NeuroImage, 31, 1771–1782.

    PubMed  CAS  Google Scholar 

  • Tillmann, B., Jolicœur, P., Ishihara, M., Gosselin, N., Bertrand, O., Rossetti, Y., & Peretz, I. (2010). The amusic brain: Lost in music, but not in space. PLoS ONE, 5(4), e10173.

    PubMed  Google Scholar 

  • Trainor, L., McDonald, K. L., & Alain, C. (2002). Automatic and controlled processing of melodic contour and interval information measured by electrical brain activity. Journal of Cognitive Neuroscience, 14, 430–442.

    PubMed  Google Scholar 

  • Ungerleider, L. G., & Haxby, J. V. (1994). ‘What’ and ‘where’ in the human brain. Current Opinion in Neurobiology, 4(2), 157–165.

    PubMed  CAS  Google Scholar 

  • Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge, MA: MIT Press.

    Google Scholar 

  • von Economo, C., & Horn, L. (1930). Über Windungsrelief, Maße und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede. Zeitschrift Neurologie und Psychiatrie, 130, 678–757.

    Google Scholar 

  • Warren, J. D., & Griffiths, T. D. (2003). Distinct mechanisms for processing spatial sequences and pitch sequences in the human auditory brain. Journal of Neuroscience, 23, 5799–5804.

    PubMed  CAS  Google Scholar 

  • Warren, J. D., Uppenkamp, S., Patterson, R. D., & Griffiths, T. D. (2003). Separating pitch chroma and pitch height in the human brain. Proceedings of the National Academy of Sciences of the USA, 100(17), 10038–10042.

    PubMed  CAS  Google Scholar 

  • Warren, J. E., Wise, R. J., & Warren, J. D. (2005). Sounds do-able: Auditory-motor transformations and the posterior temporal plane. Trends in Neurosciences, 28(12), 636–643.

    PubMed  CAS  Google Scholar 

  • Warrier, C., Wong, P., Penhune, V., Zatorre, R., Parrish, T., Abrams, D., & Kraus, N. (2009). Relating structure to function: Heschl’s gyrus and acoustic processing. Journal of Neuroscience, 29(1), 61–69.

    PubMed  CAS  Google Scholar 

  • Watanabe, D., Savion-Lemieux, T., & Penhune, V. B. (2007). The effect of early musical training on adult motor performance: Evidence for a sensitive period in motor learning. Experimental Brain Research, 176, 332–340.

    Google Scholar 

  • Wong, P. C., Skoe, E., Russo, N. M., Dees, T., & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10(4), 420–422.

    PubMed  CAS  Google Scholar 

  • Wong, P. C. M., Warrier, C. M., Penhune, V. B., Roy, A. K., Sadehh, A., Parrish, T. B., & Zatorre, R. J. (2008). Volume of left Heschl’s gyrus and linguistic pitch learning. Cerebral Cortex, 18, 828–836.

    PubMed  Google Scholar 

  • Zacks, J. M. (2008). Neuroimaging studies of mental rotation: A meta-analysis and review. Journal of Cognitive Neuroscience, 20(1), 1–19.

    PubMed  Google Scholar 

  • Zarate, J. M., & Zatorre, R. J. (2008). Experience-dependent neural substrates involved in vocal pitch regulation during singing. NeuroImage, 40(4), 1871–1887.

    PubMed  Google Scholar 

  • Zarate, J. M., Delhommeau, K., Wood, S., & Zatorre, R. J. (2010a). Vocal accuracy and neural plasticity following micromelody-discrimination training. PLoS ONE, 5(6), e11181.

    PubMed  Google Scholar 

  • Zarate, J. M., Wood, S., & Zatorre, R. J. (2010b). Neural networks involved in voluntary and involuntary vocal pitch regulation in experienced singers. Neuropsychologia, 48(2), 607–618.

    PubMed  Google Scholar 

  • Zatorre, R. J. (1985). Discrimination and recognition of tonal melodies after unilateral cerebral excisions. Neuropsychologia, 23, 31–41.

    PubMed  CAS  Google Scholar 

  • Zatorre, R. J. (1988). Pitch perception of complex tones and human temporal-lobe function. Journal of the Acoustical Society of America, 84(2), 566–572.

    PubMed  CAS  Google Scholar 

  • Zatorre, R. J., & Belin, P. (2001). Spectral and temporal processing in human auditory cortex. Cerebral Cortex, 11, 946–953.

    PubMed  CAS  Google Scholar 

  • Zatorre, R. J., & Gandour, J. T. (2007). Neural specializations for speech and pitch: Moving beyond the dichotomies. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363, 1087–1104.

    Google Scholar 

  • Zatorre, R. J., Evans, A. C., & Meyer, E. (1994). Neural mechanisms underlying melodic perception and memory for pitch. Journal of Neuroscience, 14(4), 1908–1919.

    PubMed  CAS  Google Scholar 

  • Zatorre, R. J., Belin, P., & Penhune, V. B. (2002a). Structure and function of auditory cortex: Music and speech. Trends in Cognitive Science, 6, 37–46.

    Google Scholar 

  • Zatorre, R. J., Bouffard, M., Ahad, P., & Belin, P. (2002b). Where is ‘where’ in the human auditory cortex? Nature Neuroscience, 5, 905–909.

    PubMed  CAS  Google Scholar 

  • Zatorre, R. J., Bouffard, M., & Belin, P. (2004). Sensitivity to auditory object features in human temporal neocortex. Journal of Neuroscience, 24(14), 3637–3642.

    PubMed  CAS  Google Scholar 

  • Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: Auditory-motor interactions in music perception and production. Nature Reviews Neuroscience, 8(7), 547–558.

    PubMed  CAS  Google Scholar 

  • Zatorre, R. J., Halpern, A. R., & Bouffard, M. (2010). Mental reversal of imagined melodies: A role for the posterior parietal cortex. Journal of Cognitive Neuroscience, 22, 775–789.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Zatorre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zatorre, R.J., Zarate, J.M. (2012). Cortical Processing of Music. In: Poeppel, D., Overath, T., Popper, A., Fay, R. (eds) The Human Auditory Cortex. Springer Handbook of Auditory Research, vol 43. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2314-0_10

Download citation

Publish with us

Policies and ethics