Skip to main content

Design and Engineering of Multifunctional Quantum Dot-Based Nanoparticles for Simultaneous Therapeutic-Diagnostic Applications

  • Chapter
  • First Online:
Multifunctional Nanoparticles for Drug Delivery Applications

Abstract

Quantum dots (QD) are semiconducting nanocrystals that have recently received a lot of interest because of their efficacy as fluorescent probes. They offer a significant increase in photostability and fluorescence lifetime compared to more traditional organic dye-based probes; however, some concern from their potential in vivo use due to their chemical composition and their nanoscale dimensions exists. Within this chapter, we discuss current knowledge about the fluorescence properties and pharmacological profile of quantum dots, showing how these characteristics can be altered after incorporation within previously established drug delivery systems for the formation of novel hybrid systems. The incorporation of therapeutic agents into such hybrid systems can further result in the construction of theranostic devices, namely, QD-based theranostics. Alternatively, conjugation of quantum dots to therapeutic moieties can be used as a scaffold for theranostic device design. This chapter will discuss the current progress in QD-based theranostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alivisatos AP, Gu W, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76

    Article  Google Scholar 

  2. Alivisatos AP (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22(1):47–52

    Article  Google Scholar 

  3. Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976

    Article  Google Scholar 

  4. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22(1):93–97

    Article  Google Scholar 

  5. Rhyner MN, Smith AM, Gao X, Mao H, Yang L, Nie S (2006) Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomedicine 1(2):209–217

    Article  Google Scholar 

  6. Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Del Rev 60(11):1226–1240

    Article  Google Scholar 

  7. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21(1):41–46

    Article  Google Scholar 

  8. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  Google Scholar 

  9. Zhong X, Feng Y, Knoll W, Han M (2003) Alloyed Zn(x)Cd(1-x)S nanocrystals with highly narrow luminescence spectral width. J Am Chem Soc 125(44):13559–13563

    Article  Google Scholar 

  10. Bailey RE, Nie S (2003) Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J Am Chem Soc 125(23):7100–7106

    Article  Google Scholar 

  11. Hines MA, Scholes GD (2003) Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv Mater 15(21):1844–1849

    Article  Google Scholar 

  12. Pietryga JM, Schaller RD, Werder D, Stewart MH, Klimov VI, Hollingsworth JA (2004) Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots. J Am Chem Soc 126(38):11752–11753

    Article  Google Scholar 

  13. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446

    Article  Google Scholar 

  14. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21(1):47–51

    Article  Google Scholar 

  15. Kim S, Fisher B, Eisler HJ, Bawendi M (2003) Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J Am Chem Soc 125(38):11466–11467

    Article  Google Scholar 

  16. Qu L, Peng X (2002) Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc 124(9):2049–2055

    Article  Google Scholar 

  17. Dabbousi BO, RodriguezViejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101(46):9463–9475

    Article  Google Scholar 

  18. Hines MA, Guyot-Sionnest P (1996) Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals. J Phys Chem 100(2):468–471

    Article  Google Scholar 

  19. Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10(9):993–998

    Article  Google Scholar 

  20. Stroh M, Zimmer JP, Duda DG, Levchenko TS, Cohen KS, Brown EB, Scadden DT, Torchilin VP, Bawendi MG, Fukumura D, Jain RK (2005) Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med 11(6):678–682

    Article  Google Scholar 

  21. Smith RA, Giorgio TD (2009) Quantitative measurement of multifunctional quantum dot binding to cellular targets using flow cytometry. Cytom Part A 75A(5):465–474

    Article  Google Scholar 

  22. Smith AM, Dave S, Nie SM, True L, Gao XH (2006) Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev Mol Diagn 6(2):231–244

    Article  Google Scholar 

  23. Fountaine TJ, Wincovitch SM, Geho DH, Garfield SH, Pittaluga S (2006) Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots. Mod Pathol 19(9):1181–1191

    Article  Google Scholar 

  24. Ferrara DE, Weiss D, Carnell PH, Vito RP, Vega D, Gao XH, Nie SM, Taylor WR (2006) Quantitative 3D fluorescence technique for the analysis of en face preparations of arterial walls using quantum dot nanocrystals and two-photon excitation laser scanning microscopy. Am J Physiol-Regul Integr Comp Physiol 290(1):R114–R123

    Article  Google Scholar 

  25. Cai WB, Shin DW, Chen K, Gheysens O, Cao QZ, Wang SX, Gambhir SS, Chen XY (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6(4):669–676

    Article  Google Scholar 

  26. Parungo CP, Ohnishi S, Kim SW, Kim S, Laurence RG, Soltesz EG, Chen FY, Colson YL, Cohn LH, Bawendi MG, Frangioni JV (2005) Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging. J Thorac Cardiovasc Surg 129(4):844–850

    Article  Google Scholar 

  27. Ballou B, Ernst LA, Andreko S, Harper T, Fitzpatrick JA, Waggoner AS, Bruchez MP (2007) Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug Chem 18(2):389–396

    Article  Google Scholar 

  28. Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 99(20):12617–12621

    Article  Google Scholar 

  29. Efros AIL, Efros AL (1982) Interband absorption of light in a semiconductor sphere. Sov Phys Semicond USSR 16:772–775

    Google Scholar 

  30. Ekimov AI, Onushchenko AA (1981) Quantum size effect in the optical-spectra of semiconductor microcrystals. Sov Phys Semicond USSR 16:775–778

    Google Scholar 

  31. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E  =  S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715

    Article  Google Scholar 

  32. Talapin DVR, Rogach AL, Kornowski A, Haase M, Weller H (2001) Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphosphine mixture. Nano Lett 1(4):207–211

    Article  Google Scholar 

  33. Yu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15(14):2854–2860

    Article  Google Scholar 

  34. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  Google Scholar 

  35. Qu LP, Peng ZA, Peng XG (2001) Alternative routes toward high quality CdSe nanocrystals. Nano Lett 1:333–337

    Article  Google Scholar 

  36. Peng ZA, Peng XG (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123(1):183–184

    Article  Google Scholar 

  37. Yu WW, Peng XG (2002) Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew Chem Int Ed 41(13):2368–2371

    Article  Google Scholar 

  38. Hines MA, Guyot-Sionnest P (1998) Bright UV-blue luminescent colloidal ZnSe nanocrystals. J Phys Chem B 102(19):3655–3657

    Article  Google Scholar 

  39. Dawood F, Schaak RE (2009) ZnO-templated synthesis of wurtzite-type ZnS and ZnSe nanoparticles. J Am Chem Soc 131(2):424–425

    Article  Google Scholar 

  40. Peng XG, Wickham J, Alivisatos AP (1998) Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J Am Chem Soc 120(21):5343–5344

    Article  Google Scholar 

  41. Guzelian AA, Katari JEB, Kadavanich AV, Banin U, Hamad K, Juban E, Alivisatos AP, Wolters RH, Arnold CC, Heath JR (1996) Synthesis of size-selected, surface-passivated InP nanocrystals. J Phys Chem 100(17):7212–7219

    Article  Google Scholar 

  42. Du H, Chen CL, Krishnan R, Krauss TD, Harbold JM, Wise FW, Thomas MG, Silcox J (2002) Optical properties of colloidal PbSe nanocrystals. Nano Lett 2(11):1321–1324

    Article  Google Scholar 

  43. Zhao XS, Gan JQ, Liu GH, Chen AM (2008) One-step synthesis and optical properties of PbS quantum dots. Acta Chim Sinica 66(16):1869–1872

    Google Scholar 

  44. Murphy JE, Beard MC, Norman AG, Ahrenkiel SP, Johnson JC, Yu PR, Micic OI, Ellingson RJ, Nozik AJ (2006) PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation. J Am Chem Soc 128(10):3241–3247

    Article  Google Scholar 

  45. Norris DJ, Yao N, Charnock FT, Kennedy TA (2001) High-quality manganese-doped ZnSe nanocrystals. Nano Lett 1(1):3–7

    Article  Google Scholar 

  46. Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  Google Scholar 

  47. Pinaud F, King D, Moore HP, Weiss S (2004) Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc 126(19):6115–6123

    Article  Google Scholar 

  48. Huang BH, Tomalia DA (2005) Dendronization of gold and CdSe/cdS (core-shell) quantum functionalized dendrons dots with tomalia type, thiol core, poly(amidoamine) (PAMAM) dendrons. J Lumin 111(4):215–223

    Article  Google Scholar 

  49. Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105(37):8861–8871

    Article  Google Scholar 

  50. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    Article  Google Scholar 

  51. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436

    Article  Google Scholar 

  52. Liu TC, Zhang HL, Wang JH, Wang HQ, Zhang ZH, Hua XF, Cao YC, Luo QM, Zhao YD (2008) Study on molecular interactions between proteins on live cell membranes using quantum dot-based fluorescence resonance energy transfer. Anal Bioanal Chem 391(8):2819–2824

    Article  Google Scholar 

  53. Xing Y, Chaudry Q, Shen C, Kong KY, Zhau HE, Chung LW, Petros JA, O’Regan RM, Yezhelyev MV, Simons JW, Wang MD, Nie S (2007) Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc 2(5):1152–1165

    Article  Google Scholar 

  54. Anas A, Okuda T, Kawashima N, Nakayama K, Itoh T, Ishikawa M, Biju V (2009) Clathrin-mediated endocytosis of quantum dot-peptide conjugates in living cells. ACS Nano 3(8):2419–2429

    Article  Google Scholar 

  55. Zhang Y, So MK, Rao JH (2006) Protease-modulated cellular uptake of quantum dots. Nano Lett 6(9):1988–1992

    Article  Google Scholar 

  56. Mulder WJM, Koole R, Brandwijk RJ, Storm G, Chin PTK, Strijkers GJ, Donega CD, Nicolay K, Griffioen AW (2006) Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett 6(1):1–6

    Article  Google Scholar 

  57. Duan HW, Nie SM (2007) Cell-penetrating quantum dots based on multivalent and endosome-disrupting surface coatings. J Am Chem Soc 129(11):3333–3338

    Article  Google Scholar 

  58. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7(10):3065–3070

    Article  Google Scholar 

  59. Chen XC, Deng YL, Lin Y, Pang DW, Qing H, Qu F, Xie HY (2008) Quantum dot-labeled aptamer nanoprobes specifically targeting glioma cells. Nanotechnology 19:235105

    Article  Google Scholar 

  60. Schipper ML, Cheng Z, Lee SW, Bentolila LA, Iyer G, Rao JH, Chen XY, Wul AM, Weiss S, Gambhirl SS (2007) MicroPET-based biodistribution of quantum dots in living mice. J Nucl Med 48(9):1511–1518

    Article  Google Scholar 

  61. Cai WB, Chen K, Li ZB, Gambhir SS, Chen XY (2007) Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 48(11):1862–1870

    Article  Google Scholar 

  62. Patt M, Schildan A, Habermann B, Mishchenko O, Patt JT, Sabri O (2010) F-18- and C-11-labelling of quantum dots with n.c.a. [F-18]fluoroethyltosylate and [C-11]methyliodide: a feasibility study. J Radioanal Nucl Chem 283(2):487–491

    Article  Google Scholar 

  63. Zhang TT, Stilwell JL, Gerion D, Ding LH, Elboudwarej O, Cooke PA, Gray JW, Alivisatos AP, Chen FF (2006) Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. Nano Lett 6(4):800–808

    Article  Google Scholar 

  64. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA (2007) Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol 127(1):143–153

    Article  Google Scholar 

  65. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15(1):79–86

    Article  Google Scholar 

  66. Choi HS, Ipe BI, Misra P, Lee JH, Bawendi MG, Frangioni JV (2009) Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett 9(6):2354–2359

    Article  Google Scholar 

  67. Fischer HC, Liu LC, Pang KS, Chan WCW (2006) Pharmacokinetics of nanoscale quantum dots: in vivo distribution, sequestration, and clearance in the rat. Adv Funct Mater 16(10):1299–1305

    Article  Google Scholar 

  68. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi MG, Frangioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165–1170

    Article  Google Scholar 

  69. Soltesz EG, Kim S, Kim SW, Laurence RG, De Grand AM, Parungo CP, Cohn LH, Bawendi MG, Frangioni JV (2006) Sentinel lymph node mapping of the gastrointestinal tract by using invisible light. Ann Surg Oncol 13(3):386–396

    Article  Google Scholar 

  70. Parungo CP, Colson YL, Kim SW, Kim S, Cohn LH, Bawendi MG, Frangioni JV (2005) Sentinel lymph node mapping of the pleural space. Chest 127(5):1799–1804

    Article  Google Scholar 

  71. Soltesz EG, Kim S, Laurence RG, DeGrand AM, Parungo CP, Dor DM, Cohn LH, Bawendi MG, Frangioni JV, Mihaljevic T (2005) Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots. Ann Thorac Surg 79(1):269–277

    Article  Google Scholar 

  72. Gopee NV, Roberts DW, Webb P, Cozart CR, Siitonen PH, Warbritton AR, Yu WW, Colvin VL, Walker NJ, Howard PC (2007) Migration of intradermally injected quantum dots to sentinel organs in mice. Toxicol Sci 98(1):249–257

    Article  Google Scholar 

  73. Yang RS, Chang LW, Wu JP, Tsai MH, Wang HJ, Kuo YC, Yeh TK, Yang CS, Lin P (2007) Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ Health Perspect 115(9):1339–1343

    Article  Google Scholar 

  74. Derfus AM, Chan WC, Bhatia SN (2003) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18

    Article  Google Scholar 

  75. Kirchner C, Javier AM, Susha AS, Rogach AL, Kreft O, Sukhorukov GB, Parak WJ (2005) Cytotoxicity of nanoparticle-loaded polymer capsules. Talanta 67(3):486–491

    Article  Google Scholar 

  76. Kirchner C, Liedl T, Kudera S, Pellegrino T, Munoz Javier A, Gaub HE, Stolzle S, Fertig N, Parak WJ (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5(2):331–338

    Article  Google Scholar 

  77. Clarke SJ, Hollmann CA, Zhang Z, Suffern D, Bradforth SE, Dimitrijevic NM, Minarik WG, Nadeau JL (2006) Photophysics of dopamine-modified quantum dots and effects on biological systems. Nat Mater 5(5):409–417

    Article  Google Scholar 

  78. Lovric J, Bazzi HS, Cuie Y, Fortin GR, Winnik FM, Maysinger D (2005) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83(5):377–385

    Article  Google Scholar 

  79. Cho SJ, Maysinger D, Jain M, Roder B, Hackbarth S, Winnik FM (2007) Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 23(4):1974–1980

    Article  Google Scholar 

  80. Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4(11):2163–2169

    Article  Google Scholar 

  81. Lovric J, Cho SJ, Winnik FM, Maysinger D (2005) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12(11):1227–1234

    Article  Google Scholar 

  82. Chan WH, Shiao NH, Lu PZ (2006) CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals. Toxicol Lett 167(3):191–200

    Article  Google Scholar 

  83. Choi AO, Cho SJ, Desbarats J, Lovric J, Maysinger D (2007) Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J Nanobiotechnol 5:1. doi:10.1186/1477-3155-5-1

    Article  Google Scholar 

  84. Shiohara A, Hoshino A, Hanaki K, Suzuki K, Yamamoto K (2004) On the cytotoxicity caused by quantum dots. Microbiol Immunol 48(9):669–675

    Google Scholar 

  85. Boldt K, Bruns OT, Gaponik N, Eychmuller A (2006) Comparative examination of the stability of semiconductor quantum dots in various biochemical buffers. J Phys Chem B 110(5):1959–1963

    Article  Google Scholar 

  86. Dollefeld H, Hoppe K, Kolny J, Schilling K, Weller H, Eychmuller A (2002) Investigations on the stability of thiol stabilized semiconductor nanoparticles. Phys Chem Chem Phys 4(19):4747–4753

    Article  Google Scholar 

  87. Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach AL, Keller S, Radler J, Natile G, Parak WJ (2004) Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett 4(4):703–707

    Article  Google Scholar 

  88. Chen FQ, Gerion D (2004) Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett 4(10):1827–1832

    Article  Google Scholar 

  89. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114(2):165–172

    Article  Google Scholar 

  90. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8. doi:10.1186/1743-8977-2-8

    Article  Google Scholar 

  91. Upadhyay P (2006) Enhanced transdermal-immunization with diptheria-toxoid using local hyperthermia. Vaccine 24(27–28):5593–5598

    Article  Google Scholar 

  92. Rieger S, Kulkarni RP, Darcy D, Fraser SE, Koster RW (2005) Quantum dots are powerful multipurpose vital labeling agents in zebrafish embryos. Dev Dyn 234(3):670–681

    Article  Google Scholar 

  93. Manabe N, Hoshino A, Liang YQ, Goto T, Kato N, Yamamoto K (2006) Quantum dot as a drug tracer in vivo. IEEE Trans Nanobioscience 5(4):263–267

    Article  Google Scholar 

  94. Al-Jamal WT, Al-Jamal KT, Bomans PH, Frederik PM, Kostarelos K (2008) Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer. Small 4(9):1406–1415

    Article  Google Scholar 

  95. Al-Jamal WT, Al-Jamal KT, Cakebread A, Halket JM, Kostarelos K (2009) Blood circulation and tissue biodistribution of lipid-quantum dot (L-QD) hybrid vesicles intravenously administered in mice. Bioconjug Chem 20(9):1696–1702

    Article  Google Scholar 

  96. Al-Jamal WT, Al-Jamal KT, Tian B, Lacerda L, Bornans PH, Frederik PM, Kostarelos K (2008) Lipid-quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo. ACS Nano 2(3):408–418

    Article  Google Scholar 

  97. Al-Jamal WT, Al-Jamal KT, Tian B, Cakebread A, Halket JM, Kostarelos K (2009) Tumor targeting of functionalized quantum dot-liposome hybrids by intravenous administration. Mol Pharm 6(2):520–530

    Article  Google Scholar 

  98. Al-Jamal WT, Kostarelos K (2007) Liposome-nanoparticle hybrids for multimodal diagnostic and therapeutic applications. Nanomedicine 2(1):85–98

    Article  Google Scholar 

  99. Gopalakrishnan G, Danelon C, Izewska P, Prummer M, Bolinger PY, Geissbuhler I, Demurtas D, Dubochet J, Vogel H (2006) Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. Angew Chem Int Ed 45(33):5478–5483

    Article  Google Scholar 

  100. Erogbogbo F, Yong KT, Hu R, Law WC, Ding H, Chang CW, Prasad PN, Swihart MT (2010) Biocompatible magnetofluorescent probes: luminescent silicon quantum dots coupled with superparamagnetic iron(III) oxide. ACS Nano 4(9):5131–5138

    Article  Google Scholar 

  101. Yong KT, Ding H, Roy I, Law WC, Bergey EJ, Maitra A, Prasad PN (2009) Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 3(3):502–510

    Article  Google Scholar 

  102. Niebling T, Zhang F, Ali Z, Parak WJ, Heimbrodt W (2009) Excitation dynamics in polymer-coated semiconductor quantum dots with integrated dye molecules: the role of reabsorption. J Appl Phys 106(10):104701

    Article  Google Scholar 

  103. Law WC, Yong KT, Roy I, Xu G, Ding H, Bergey EJ, Zeng H, Prasad PN (2008) Optically and magnetically doped organically modified silica nanoparticles as efficient magnetically guided biomarkers for two-photon imaging of live cancer cells. J Phys Chem C 112(21):7972–7977

    Article  Google Scholar 

  104. Schabas G, Wang CW, Oskooei A, Yusuf H, Moffitt MG, Sinton D (2008) Formation and shear-induced processing of quantum dot colloidal assemblies in a multiphase microfluidic chip. Langmuir 24(19):10596–10603

    Article  Google Scholar 

  105. Wang CW, Oskooei A, Sinton D, Moffitt MG (2010) Controlled self-assembly of quantum dot-block copolymer colloids in multiphase microfluidic reactors. Langmuir 26(2):716–723

    Article  Google Scholar 

  106. Guo Y, Moffitt MG (2007) Semiconductor quantum dots with environmentally responsive mixed polystyrene/poly(methyl methacrylate) brush layers. Macromolecules 40(16):5868–5878

    Article  Google Scholar 

  107. Hu R, Yong KT, Roy I, Ding H, Law WC, Cai HX, Zhang XH, Vathy LA, Bergey EJ, Prasad PN (2010) Functionalized near-infrared quantum dots for in vivo tumor vasculature imaging. Nanotechnology 21:145105

    Article  Google Scholar 

  108. Law WC, Yong KT, Roy I, Ding H, Hu R, Zhao WW, Prasad PN (2009) Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging. Small 5(11):1302–1310

    Article  Google Scholar 

  109. Guo Y, Shi DL, Cho HS, Dong ZY, Kulkarni A, Pauletti GM, Wang W, Lian J, Liu W, Ren L, Zhang QQ, Liu GK, Huth C, Wang LM, Ewing RC (2008) In vivo imaging and drug storage by quantum-dot-conjugated carbon nanotubes. Adv Funct Mater 18(17):2489–2497

    Article  Google Scholar 

  110. Shi DL, Cho HS, Huth C, Wang F, Dong ZY, Pauletti GM, Lian J, Wang W, Liu GK, Bud’ko SL, Wang LM, Ewing RC (2009) Conjugation of quantum dots and Fe3O4 on carbon nanotubes for medical diagnosis and treatment. Appl Phys Lett 95(22):223702. doi:10.163/1.3268469

    Article  Google Scholar 

  111. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160

    Article  Google Scholar 

  112. Gerasimov OV, Boomer JA, Qualls MM, Thompson DH (1999) Cytosolic drug delivery using pH- and light-sensitive liposomes. Adv Drug Del Rev 38(3):317–338

    Article  Google Scholar 

  113. Derfus AM, Chan WCW, Bhatia SN (2004) Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater 16(12):961–966

    Article  Google Scholar 

  114. Sigot V, Arndt-Jovin DJ, Jovin TM (2010) Targeted cellular delivery of quantum dots loaded on and in biotinylated liposomes. Bioconjug Chem 21(8):1465–1472

    Article  Google Scholar 

  115. Ho YP, Leong KW (2010) Quantum dot-based theranostics. Nanoscale 2(1):60–68

    Article  Google Scholar 

  116. Kostarelos K, Miller AD (2005) Synthetic, self-assembly ABCD nanoparticles: a structural paradigm for viable synthetic non-viral vectors. Chem Soc Rev 34(11):970–994

    Article  Google Scholar 

  117. Derfus AM, Chen AA, Min DH, Ruoslahti E, Bhatia SN (2007) Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem 18(5):1391–1396

    Article  Google Scholar 

  118. Srinivasan C, Lee J, Papadimitrakopoulos F, Silbart LK, Zhao MH, Burgess DJ (2006) Labeling and intracellular tracking of functionally active plasmid DNA with semiconductor quantum dots. Mol Ther 14(2):192–201

    Article  Google Scholar 

  119. Ho YP, Chen HH, Leong KW, Wang TH (2006) Evaluating the intracellular stability and unpacking of DNA nanocomplexes by quantum dots-FRET. J Control Release 116(1):83–89

    Article  Google Scholar 

  120. Chen HH, Ho YP, Jiang X, Mao HQ, Wang TH, Leong KW (2008) Quantitative comparison of intracellular unpacking kinetics of polyplexes by a model constructed from quantum Dot-FRET. Mol Ther 16(2):324–332

    Article  Google Scholar 

  121. Anas A, Akita H, Harashima H, Itoh T, Ishikawa M, Biju V (2008) Photosensitized breakage and damage of DNA by CdSe-ZnS quantum dots. J Phys Chem B 112(32):10005–10011

    Article  Google Scholar 

  122. Li D, Li GP, Guo WW, Li PC, Wang EK, Wang J (2008) Glutathione-mediated release of functional plasmid DNA from positively charged quantum dots. Biomaterials 29(18):2776–2782

    Article  Google Scholar 

  123. Lee PW, Hsu SH, Tsai JS, Chen FR, Huang PJ, Ke CJ, Liao ZX, Hsiao CW, Lin HJ, Sung HW (2010) Multifunctional core-shell polymeric nanoparticles for transdermal DNA delivery and epidermal Langerhans cells tracking. Biomaterials 31(8):2425–2434

    Article  Google Scholar 

  124. Zintchenko A, Susha AS, Concia M, Feldmann J, Wagner E, Rogach AL, Ogris M (2009) Drug nanocarriers labeled with near-infrared-emitting quantum dots (quantoplexes): imaging fast dynamics of distribution in living animals. Mol Ther 17(11):1849–1856

    Article  Google Scholar 

  125. David S, Pitard B, Benoit JP, Passirani C (2010) Non-viral nanosystems for systemic siRNA delivery. Pharmacol Res 62(2):100–114

    Article  Google Scholar 

  126. Chen AA, Derfus AM, Khetani SR, Bhatia SN (2005) Quantum dots to monitor RNAi delivery and improve gene silencing. Nucleic Acids Res 33(22):e190. doi:10.1093/nar/gni188

    Article  Google Scholar 

  127. Tan WB, Jiang S, Zhang Y (2007) Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials 28(8):1565–1571

    Article  Google Scholar 

  128. Jung JJ, Solanki A, Memoli KA, Kamei K, Kim H, Drahl MA, Williams LJ, Tseng HR, Lee K (2010) Selective inhibition of human brain tumor cells through multifunctional quantum-dot-based siRNA delivery. Angew Chem Int Ed 49(1):103–107

    Article  Google Scholar 

  129. Walther C, Meyer K, Rennert R, Neundorf I (2008) Quantum dot-carrier peptide conjugates suitable for imaging and delivery applications. Bioconjug Chem 19(12):2346–2356

    Article  Google Scholar 

  130. Yezhelyev MV, Qi LF, O’Regan RM, Nie S, Gao XH (2008) Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J Am Chem Soc 130(28):9006–9012

    Article  Google Scholar 

  131. Jiang G, Park K, Kim J, Kim KS, Hahn SK (2009) Target specific intracellular delivery of siRNA/PEI-HA complex by receptor mediated endocytosis. Mol Pharm 6(3):727–737

    Article  Google Scholar 

  132. Qi L, Gao X (2008) Quantum dot-amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA. ACS Nano 2(7):1403–1410

    Article  Google Scholar 

  133. Juzenas P, Chen W, Sun YP, Coelho MAN, Generalov R, Generalova N, Christensen IL (2008) Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv Drug Del Rev 60(15):1600–1614

    Article  Google Scholar 

  134. Yaghini E, Seifalian AM, MacRobert AJ (2009) Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy. Nanomedicine 4(3):353–363

    Article  Google Scholar 

  135. Dayal S, Lou YB, Samia ACS, Berlin JC, Kenney ME, Burda C (2006) Observation of non-Förster-type energy-transfer behavior in quantum dot-phthalocyanine conjugates. J Am Chem Soc 128(43):13974–13975

    Article  Google Scholar 

  136. Shi LX, Hernandez B, Selke M (2006) Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites. J Am Chem Soc 128(19):6278–6279

    Article  Google Scholar 

  137. Blanco NG, Maldonado CR, Mareque-Rivas JC (2009) Effective photoreduction of a Pt(IV) complex with quantum dots: a feasible new light-induced method of releasing anticancer Pt(II) drugs. Chem. Commun 5257–5259

    Google Scholar 

  138. Weng KC, Noble CO, Papahadjopoulos-Sternberg B, Chen FF, Drummond DC, Kirpotin DB, Wang DH, Hom YK, Hann B, Park JW (2008) Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. Nano Lett 8(9):2851–2857

    Article  Google Scholar 

  139. Park JH, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2008) Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew Chem Int Ed 47(38):7284–7288

    Article  Google Scholar 

  140. Zhou YY, Shi LX, Li QN, Jiang H, Lv G, Zhao J, Wu CH, Selke M, Wang XM (2010) Imaging and inhibition of multidrug resistance in cancer cells via specific association with negatively charged CdTe quantum dots. Biomaterials 31(18):4958–4963

    Article  Google Scholar 

  141. Song H, He R, Wang K, Ruan J, Bao CC, Li N, Ji JJ, Cui DX (2010) Anti-HIF-1 alpha antibody-conjugated pluronic triblock copolymers encapsulated with Paclitaxel for tumor targeting therapy. Biomaterials 31(8):2302–2312

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tian, B., Al-Jamal, W.T., Van den Bossche, J., Kostarelos, K. (2012). Design and Engineering of Multifunctional Quantum Dot-Based Nanoparticles for Simultaneous Therapeutic-Diagnostic Applications. In: Svenson, S., Prud'homme, R. (eds) Multifunctional Nanoparticles for Drug Delivery Applications. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2305-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2305-8_16

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-2304-1

  • Online ISBN: 978-1-4614-2305-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics