Skip to main content

Membrane Technology

  • Chapter
  • First Online:
Carbon Capture

Abstract

Membrane separation processes have many advantages over absorption and adsorption processes, some of which include the following: no regeneration, ease of integration into a power plant, process continuity, space efficiency, and absence of a phase change, which can lead to increases in efficiency. Membrane applications, however, require a sufficient driving force for effective separation of a more permeable species. In postcombustion capture of CO2 for a traditional coal-fired or natural gas-fired power plant this is a challenge due to the somewhat somewhat low concentration of CO2 in the flue gases of these processes. This is in the case that CO2 is the selective component for separation from the gas mixture. For membrane technology to be applicable for these somewhat dilute systems, either the CO2 concentration in the flue gas would have to be increased or the selective component would have to be the dominant species (i.e., N2) in the gas mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For nonideal gases, the driving force is proportional to the fugacity difference across the membrane for a given gas species permeating the membrane.

  2. 2.

    Multiply by 3.348 × 10 − 19 to convert from Barrer to (kmol m)/(m2sPa).

  3. 3.

    For natural gas purification, the ideal separation factor for CO2/CH4 is ~ 20, and reduced to ~ 15 at high feed pressure; for N2 production from air, the ideal separation factor is ~ 6–8, with the residue stream (N2) as the product.

  4. 4.

    Based upon DOE target goals of 90% capture

References

  1. Richard W Baker, Personal Communication, Membrane Research Technology, Palo Alto, CA, 2011

    Google Scholar 

  2. J. Membrane Sci., 320(1–2), Robeson LM The upper bound revisited, 390–400, Copyright (2008)

    Google Scholar 

  3. Ho WS, Sirkar KK Membrane handbook. Van Hostrand Reinhold: New York, 1992; p 3–101

    Book  Google Scholar 

  4. Baker, R., Membrane Technology and Applications, 2nd ed. (2004)

    Google Scholar 

  5. Rackley, S. A., Membrane Separation Systems, 171–172, Copyright Elsevier (2010)

    Google Scholar 

  6. Springer Science + Business Media B.V. Springer and Van Hostrand Reinhold, Membrane Handbook, 1992, Ho WS Sirkar, K.K., 64–66

    Google Scholar 

  7. Seader JD, Henley EJ Separation Process Principles (2006) John Wiley & Sons

    Google Scholar 

  8. Industrial Gas Separations, Chapter 3, ACS Symposium Series Chern RT, Koros WJ, Sanders ES, Chen SH, Hopfenberg HB V223. American Chemical Society, pp. 47–73 (Copyright 1983)

    Google Scholar 

  9. J Membrane Sci, Robeson LM Correlation of separation factor versus permeability forpolymeric membranes, 165–185

    Google Scholar 

  10. Wilcox J (2011) Nitrogen-Permeable membranes and uses thereof. U.S. Patent 2011/0182797, Stanford University, Stanford, CA

    Google Scholar 

  11. Baker RW (2004) Membrane technology and applications, 2nd edn. John Wiley & Sons, Inc., Chichester

    Book  Google Scholar 

  12. McCabe WL, Smith JC, Harriott P (2005) Unit Operations of Chemical Engineering, 7th edn. McGraw-Hill, New York

    Google Scholar 

  13. Stern AS (1994) Polymers for gas separations: the next decade J Membrane Sci 94 (1):1–65

    Google Scholar 

  14. Robeson LM (2001) Polymeric membranes for gas separation in Encyclopedia of Materials: Science and Technology. Pergamon

    Google Scholar 

  15. Favre E (2010) Polymeric Membranes for Gas Separation. Drioli, E and Giorno, L. (eds), in Comprehensive Membrane Science and Engineering, Elsevier: Vol 2

    Google Scholar 

  16. Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes J Membrane Sci 62(2):165–185

    Google Scholar 

  17. Robeson LM (2008) The upper bound revisited J Membrane Sci 320(1–2):390–400

    Google Scholar 

  18. Lin H, Freeman BD (2004) Gas solubility, diffusivity and permeability in poly (ethylene oxide) J Membrane Sci 239(1):105–117

    Google Scholar 

  19. Okamoto K, Umeo N, Okamyo S, Tanaka K, Kita H (1993) Selective permeation of carbon dioxide over nitrogen through polyethyleneoxide-containing polyimide membranes Chemestry Letters 22(2):225–228

    Google Scholar 

  20. Robeson LM, Burgoyne WF, Langsam M, Savoca AC, Tien CF (1994) High performance polymers for membrane separation Polymer 35(23):4970–4978

    Google Scholar 

  21. Budd PM, Msayib KJ, Tattershall CE, Ghanem BS, Reynolds KJ, McKeown NB, Fritsch D (2005) Gas separation membranes from polymers of intrinsic microporosity J Membrane Sci 251(1–2):263–269

    Google Scholar 

  22. Park HB, Jung CH, Lee YM, Hill AJ, Pas SJ, Mudie ST, Van Wagner E, Freeman BD Cookson DJ (2007) Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318(5848):254

    Article  CAS  Google Scholar 

  23. Barrer RM, Barrie JA, Slater J (1958) Sorption and diffusion in ethyl cellulose. Part III. Comparison between ethyl cellulose and rubber J Polym Sci 27(115):177–197

    Google Scholar 

  24. Michaels AS, Vieth WR, Barrie JA (1963) Diffusion of gases in polyethylene terephthalate J Appl Phys 34(1):13–20

    Google Scholar 

  25. Koros WJ, Chan AH, Paul DR (1977) Sorption and transport of various gases in polycarbonate J Membrane Sci 2:165–190

    Google Scholar 

  26. Billmeyer FW (1971) Polymer chains and their characterization. In: Textbook of polymer science. Wiley Interscience Publishers, New York, pp. 84–85

    Google Scholar 

  27. Petropoulos JH (1994) Mechanisms and theories for sorption and diffusion of gases in polymers. In: Polymeric gas separation membranes. Paul DR, Yampol’skii YP (eds) CRC Press: Boca Raton, pp. 17–81

    Google Scholar 

  28. (a) Dhingra SS, Marand E (1998) Mixed gas transport study through polymeric membranes J Membrane Sci 141(1):45–63; (b) Koros W (1980) Model for sorption of mixed gases in glassy polymers J Polym Sci Polym Phys 18(5):981–992; (c) Frisch HL (1980) Sorption and transport in glassy polymers Polym Eng Sci 20(1):2–13; (d) Barbari TA, Conforti RM(1980) Recent Theories in Gas Sorption in Polymers Polym Adv Technol 5(11):698–707

    Google Scholar 

  29. Sonwane CG, Wilcox J, Ma YH (2006) Achieving optimum hydrogen permeability in PdAg and PdAu alloys J Chem Phys 125:184714

    Google Scholar 

  30. Sieverts A, Danz W (1936) Solubility of D2 and H2 in Palladium Z Phys Chem 34:158

    Google Scholar 

  31. (a) Aboud S, Wilcox J (2010) A density functional theory study of the charge state of hydrogen in metal hydrides J Phys Chem C 114(24):10978–10985; (b) Kamakoti P, Morreale BD, Ciocco MV, Howard BH, Killmeyer RP, Cugini AV, Sholl DS (2005) Prediction of hydrogen flux through sulfur-tolerant binary alloy membranes. Science 307(5709):569

    Google Scholar 

  32. Sammells AF, Mundschau MV (2006) Nonporous inorganic membranes: for chemical processing. Wiley-VCH, Weinheim

    Book  Google Scholar 

  33. Stannett V, Koros W, Paul D, Lonsdale H, Baker R (1979) Recent advances in membrane science and technology Adv Polymer Sci 32:69–121

    Google Scholar 

  34. Keller GEI, Anderson RA, Yon CM (1987) Adsorption. In: Handbook of separation process Technology. Rousseau RW (ed). John Wiley & Sons, New York, p. 644–696

    Google Scholar 

  35. Stern SA, Shah VM, Hardy BJ (1987) Structure permeability relationships in silicone polymers J Polym Sci Polym Phys 25(6):1263–1298

    Google Scholar 

  36. Chern RT, Koros WJ, Sanders ES, Chen SH, Hopfenberg HB (1983) In: Implications of the dual-mode sorption and transport models for mixed gas permeation, ACS Symposium Series 233. ACS Publications, Washington, p. 47

    Google Scholar 

  37. (a) Pick MA, Davenport JW, Strongin M, Dienes GJ (1979) Enhancement of hydrogen uptake rates for Nb and Ta by thin surface overlayers Phys Rev Lett 43(4):286–289; (b) Roa F, Way JD (2003) Influence of alloy composition and membrane fabrication on the pressure dependence of the hydrogen flux of palladium-copper membranes Ind Eng Chem Res 42(23):5827–5835

    Google Scholar 

  38. (a) Sonwane CG, Wilcox J, Ma YH (2006) Solubility of hydrogen in PdAg and PdAu binary alloys using density functional theory J Phys Chem B 110(48):24549–24558; (b) Kamakoti P, Sholl DS (2003) A comparison of hydrogen diffusivities in Pd and CuPd alloys using density functional theory J Membrane Sci 225(1–2):145–154

    Google Scholar 

  39. Roa F, Block MJ, Way JD (2002) The influence of alloy composition on the H2 flux of composite Pd–Cu membranes Desalination 147(1–3):411–416

    Google Scholar 

  40. Mckinley DL (1969) Method for hydrogen separation and purification

    Google Scholar 

  41. Gade SK, Keeling MK, Davidson AP, Hatlevik O, Way JD (2009) Palladium-ruthenium membranes for hydrogen separation fabricated by electroless co-deposition Int J Hydrog Energy 34(15):6484–6491

    Google Scholar 

  42. Morreale BD, Ciocco MV, Enick RM, Morsi BI, Howard BH, Cugini AV, Rothenberger KS (2003) The permeability of hydrogen in bulk palladium at elevated temperatures and pressures J Membrane Sci 212 (1–2):87–97

    Google Scholar 

  43. Zhang GX, Yukawa H, Watanabe N, Saito Y, Fukaya H, Morinaga M, Nambu T, Matsumoto Y (2008) Analysis of hydrogen diffusion coefficient during hydrogen permeation through pure niobium Int J Hydrog Energy33 (16):4419–4423

    Google Scholar 

  44. Yukawa H, Nambu T, Matsumoto K V-W alloy membranes for hydrogens for hydrogen purification J Alloy Compd 509, S881–S884, 2011

    Google Scholar 

  45. Steward SA (1983) Review of hydrogen isotope permeability through materials. Lawrence Livermore National Lab, CA

    Book  Google Scholar 

  46. Watanabe N, Yukawa H, Nambu T, Matsumoto Y, Zhang GX, Morinaga M (2009) Alloying effects of Ru and W on the resistance to hydrogen embrittlement and hydrogen permeability of niobium J Alloy Compd 477(1–2):851–854

    Google Scholar 

  47. Way JD, Noble RD, Reed DL, Ginley GM, Jarr LA (1987) Facilitated transport of CO2 in ion exchange membranes AIChE J 33(3):480–487

    Google Scholar 

  48. S.A. Rackley, Carbon Capture and Storage, Butterworth-Heinemann: Burlington MA, 2010, p. 167

    Google Scholar 

  49. (a) Hsieh HP, Bhave RR, Fleming HL (1988) Microporous alumina membranes J Membrane Sci 39(3):221–241; (b) Niwa M, Ohya H, Tanaka Y, Yoshikawa N, Matsumoto K, Negishi Y (1988) Separation of gaseous mixtures of CO2 and CH4 using a composite microporous glass membrane on ceramic tubing J Membrane Sci 39(3)301–314

    Google Scholar 

  50. Koresh JE, Soffer A (1987) The carbon molecular sieve membranes. General properties and the permeability of CH4/H2 mixture Separ Sci Technol 22(2):973–982

    Google Scholar 

  51. McCaffrey RR, Cummings DG (1988) Gas separation properties of phosphazene polymer membranes Separ Sci Technol 23(12):1627–1643

    Google Scholar 

  52. McCaffrey RR, McAtee RE, Grey AE, Allen CA, Cummings DG, Appelhans AD, Wright RB, Jolley JG (1987) Inorganic membrane technology Separ Sci Technol22(2):873–887

    Google Scholar 

  53. Hogsett JE, Mazur WH (1983) Estimate membrane system area Hydrocarbon Process62(8):52–54

    Google Scholar 

  54. Lokhandwala KA, Segelke S, Nguyen P, Baker RW, Su TT, Pinnau I (1999) A Membrane process to recover Chlorine from Chloroalkali Plant Tail Gas Ind Eng Chem Res 38(10):3606–3613

    Google Scholar 

  55. (a) McKelvey SA, Klausi DT, Koros JW (1997) A guide to establishing hollow fiber macroscopic properties for membrane applications J Membrane Sci124(2):223–232; (b) Gabelman A, Hwang ST (1999) Hollow fiber membrane contactors J Membrane Sci159(1–2):61–106; (c) Masourizadeh A, Ismail AF (2009) Hollow fiber liquid-gas contactors for acid gas capture: a review J Hazard Mater,171(1–3):38–53; (d) Porcheron F, Ferre D, Favre E, Nuguyen PT, Lorain O, Mercier R, Rougeau L (2011) Hollow fiber membrane contactors for CO2 capture: From lab-scale screening to pilot-plant module conception Energy Procedia 4(763–770)

    Google Scholar 

  56. Hwang ST, Thorman JM (1980) The continuous membrane column Am Inst Chem Eng 26(4):558–566

    Google Scholar 

  57. Favre E (2007) Carbon dioxide recovery from post-combustion processes: can gas permeation membranes compete with absorption? J Membrane Sci 294(1–2):50–59

    Google Scholar 

  58. Paul DR, Koros WJ (1976) Effect of Partially Immobilizing Sorption Permeability and the Diffusion Time Lag J Polm Sci Pol Phys 14(4):675–685

    Google Scholar 

  59. Gestel TV, Sebold D, Hauler F, Meulenberg WA, Buchkremer H-P (2010) Potentialities of microporous membranes for H2/CO2 separation in future fossil fuel power plants: evaluation of SiO2, ZeO2, Y2O3-ZrO2 and TuO2-ZrO2 sol-gel membranes. J Mem Sci 359 (1–2):64–79

    Google Scholar 

  60. Venna SR, Jasinski JB, Carreon MA (2010) Structural Evolution of Zeolitic Imidazolate Framework-8. J Am Chem Soc 132 (51):18030–18033.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Wilcox .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wilcox, J. (2012). Membrane Technology. In: Carbon Capture. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2215-0_5

Download citation

Publish with us

Policies and ethics