Skip to main content

Nanorobotics: Past, Present, and Future

  • Chapter
  • First Online:
Nanorobotics

Abstract

This chapter focuses on the state of the art in the field of nanorobotics by presenting a brief historical overview, the various types of nanorobotic systems, their applications, and future directions in this field. Nanorobots are basically any type of active structure capable of any one of the following (or any of their combination): actuation, sensing, manipulation, propulsion, signaling, information processing, intelligence, and swarm behavior at the nanoscale (10−9 m). The following four types of nanorobotic systems have been developed and studied so far (a) large size nanomanipulators with nanoscale manipulation capability; (b) protein- and DNA-based bionanorobotic systems; (c) magnetically guided nanorobotic systems; and (d) bacterial-based nanorobotics. Nanorobotic systems are expected to be used in many different areas that range from medical to environmental sensing to space and military applications. From precise drug delivery to repairing cells and fighting tumor cells, nanorobots are expected to revolutionize the medical industry in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Requicha AAG, Baur C, Bugacov A, Gazen BC, Koel B, Madhukar A, Ramachandran TR, Resch R, Will P (1998) Nanorobotic assembly of two-dimensional structures. In: Proceedings of the IEEE international conference on robotics and automation, Leuven, Belgium, 16–21 May 1998, pp 3368–3374

    Google Scholar 

  2. Sitti M, Hashimoto H (1998) Tele-nanorobotics using atomic force microscope. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, IROS’98, Victoria, Canada, October, pp 1739–1746

    Google Scholar 

  3. Freitas RA Jr (1999) Nanomedicine, volume I: basic capabilities. Landes Bioscience, Georgetown, TX, http://www.nanomedicine.com/NMI.htm

  4. Wowk B (1988) Cell repair technology. Cryonics Magazine, Alcor Foundation Reprint, pp 7–10

    Google Scholar 

  5. Dewdney AK (1988) Nanotechnology – wherein molecular computers control tiny circulatory submarines. Sci Am 258(101):100–103

    Article  Google Scholar 

  6. Drexler KE (1986) Engines of creation: the coming era of nanotechnology. Anchor, New York

    Google Scholar 

  7. Drexler KE, Peterson C, Pergamit G (1991) Unbounding the future: the nanotechnology revolution. William Morrow, New York

    Google Scholar 

  8. Drexler KE (1992) Nanosystems: molecular machinery, manufacturing, and computation. Wiley, New York

    Google Scholar 

  9. Freitas RA Jr (2003) Nanomedicine, volume IIA: biocompatibility. Landes Bioscience, Georgetown, TX, http://www.nanomedicine.com/NMIIA.htm

  10. Freitas RA Jr (2005) Current status of nanomedicine and medical nanorobotics. J Comput Theor Nanosci 2:1–25

    Google Scholar 

  11. Asimov I (1966) Fantastic voyage. Houghton Mifflin, Boston, MA

    Google Scholar 

  12. Crichton M (2002) Prey. Avon, New York

    Google Scholar 

  13. Weir NA, Sierra DP, Jones JF (2005) A review of research in the field of nanorobotics. Sandia National Laboratories Report SAND2005-6808. http://prod.sandia.gov/techlib/access-control.cgi/2005/056808.pdf

  14. Ummat A, Dubey A, Sharma G, Mavroidis C (2006) Bio-nano-robotics: state of the art and future challenges (chapter 19, invited chapter). In: Bronzino JD (ed) Tissue engineering and artificial organs, The biomedical engineering handbook. CRC, Boca Raton, FL. ISBN 0849321239

    Google Scholar 

  15. Vartholomeos P, Fruchard M, Ferreira A, Mavroidis C (2010) MRI-guided nanorobotic systems for drug delivery (chapter 45). In: Klaus S (ed) Handbook of nano-physics, vol 7. Taylor & Francis, Boca Raton, FL. ISBN 978-1-4200753-8-0

    Google Scholar 

  16. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Oxford University Press, New York

    MATH  Google Scholar 

  17. Arbuckle DJ, Requicha AAG (2010) Self-assembly and self-repair of arbitrary shapes by a swarm of reactive robots: algorithms and simulations. Auton Robot 28(2):197–211

    Article  Google Scholar 

  18. Freitas RA Jr, Merkle RC (2004) Kinematic self-replicating machines. Landes Bioscience, Georgetown, TX, http://www.MolecularAssembler.com/KSRM.htm

    Google Scholar 

  19. Ummat A, Dubey A, Mavroidis C, Mavroidis C (2010) Bionanorobotics: a field inspired by nature (chapter 7, invited chapter). In: Bar-Cohen Y (ed) Biomimetics – biologically inspired technologies. CRC, Boca Raton, FL, pp 201–227. ISBN 0849331633

    Google Scholar 

  20. Ferreira A, Mavroidis C (2006) Virtual reality and haptics in nano robotics: a review study. IEEE Robot Autom Mag 13(2):78–92

    Article  Google Scholar 

  21. Freudenstein F (1973) Kinematics: past, present and future. Mech Mach Theory 8:151–160

    Article  Google Scholar 

  22. Cray D (2000) Incredible shrinking doctors. Pop Sci July:63–65

    Google Scholar 

  23. Stroscio JA, Eigler DM (1991) Atomic and molecular manipulation with the scanning tunneling microscope. Science 254(5036):1319–1326

    Article  Google Scholar 

  24. Eigler DM, Schweizer EK (1990) Positioning single atoms with a scanning tunneling microscope. Nature 344:524–526

    Article  Google Scholar 

  25. Requicha AA (1999) Nanorobotics. In: Shimon YN (ed) Handbook of industrial robotics. Wiley, New York

    Google Scholar 

  26. Dong LX, Arai F, Fukuda T (2001) 3-D nanorobotic manipulation of nanometer-scale objects. J Robot Mechatron 13(2):146–153

    Google Scholar 

  27. Fukuda T, Arai F, Dong L (2003) Assembly of nanodevices with carbon nanotubes through nanorobotic manipulation. Proc IEEE 91(11):1803–1818

    Article  Google Scholar 

  28. Fukuda T, Arai F, Dong LX (2005) Nanorobotic systems. Int J Adv Robot Syst 2(3):264–275

    Google Scholar 

  29. Du E, Cui H, Zhu Z (2006) Review of nanomanipulators for nanomanufacturing. Int J Nanomanufacturing 1(1):83–104

    Article  Google Scholar 

  30. Dong LX, Nelson BJ (2007) Robotics in the small, part II: nanorobotics. IEEE Robot Autom Mag 14(3):111–121

    Article  MATH  Google Scholar 

  31. Dong LX, Subramanian A, Nelson BJ (2007) Carbon nanotubes for nanorobotics. Nano Today 2(6):12–21

    Article  Google Scholar 

  32. Dubey A, Mavroidis C, Thornton A, Nikitczuk KP, Yarmush ML (2003) Viral protein linear (VPL) nano-actuators. In: Proceedings of the 2003 IEEE – NANO conference, San Francisco, CA, 12–14 August 2003, vol 2, pp 140–143

    Google Scholar 

  33. Dubey A, Sharma G, Mavroidis C, Tomassone SM, Nikitczuk KP, Yarmush ML (2004) Dynamics and kinematics of viral protein linear nano-actuators for bio-nano robotic systems. In: Proceedings of the 2004 IEEE international conference of robotics and automation, New Orleans, LA, 26 April–1 May 2004, pp 1628–1633

    Google Scholar 

  34. Mavroidis C, Dubey A, Yarmush M (2004) Molecular machines. Annu Rev Biomed Eng 6:363–395

    Article  Google Scholar 

  35. Sherman WB, Seeman NC (2004) A precisely controlled DNA bipedal walking device. Nano Lett 4:1203–1207

    Article  Google Scholar 

  36. Montemagno CD, Bachand GD (1999) Constructing nanomechanical devices powered by biomolecular motors. Nanotechnology 10:225–331

    Article  Google Scholar 

  37. Bachand GD, Montemagno CD (2000) Constructing organic/inorganic NEMS devices powered by biomolecular motors. Biomed Microdevices 2:179–184

    Article  Google Scholar 

  38. Yurke B, Turberfield AJ, Mills AP Jr, Simmel FC, Neumann JL (2000) A DNA-fuelled molecular machine made of DNA. Nature 406:605–608

    Article  Google Scholar 

  39. Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070):831–834

    Article  Google Scholar 

  40. Hamdi M, Ferreira A, Sharma G, Mavroidis C (2008) Prototyping bio-nanorobots using molecular dynamics simulation and virtual reality. Microelectron J 30(2):190–201

    Article  Google Scholar 

  41. Dubey A, Mavroidis C, Tomassone SM (2006) Molecular dynamic studies of viral-protein based nano-actuators. J Comput Theor Nanosci 3(6):885–897

    Article  Google Scholar 

  42. Sharma G, Rege K, Budil D, Yarmush M, Mavroidis C (2008) Reversible pH-controlled DNA binding peptide nano-tweezers – an in-silico study. Int J Nanomed 3(4):505–521

    Google Scholar 

  43. Sharma G, Rege K, Budil D, Yarmush M, Mavroidis C (2009) Computational studies of a protein based nanoactuator for nanogripping applications. Int J Robot Res 28(4):421–435

    Article  Google Scholar 

  44. Sharma G, Rege K, Budil D, Yarmush M, Mavroidis C (2009) Biological force measurement in a protein based nano-actuator. IEEE Trans Nanotechnol 8(6):684–691

    Article  Google Scholar 

  45. Gullà S, Sharma G, Borbat P, Freed J, Ghimire H, Lorigan G, Rege K, Mavroidis C, Budil D (2009) Molecular-scale force measurement in a coiled-coil peptide by electron spin resonance. J Am Chem Soc 131(15):5374–5375

    Article  Google Scholar 

  46. Hamdi M, Ferreira A (2009) Multiscale design and modeling of protein-based nanomechanisms for nanorobotics. Int J Robot Res 28:436–449

    Article  Google Scholar 

  47. Ferreira A, Sharma G, Mavroidis C (2005) New trends in bio-nanorobotics using virtual reality technologies. In: Proceedings of the IEEE international conference on robotics and biomimetics (IEEE ROBIO 2005), Hong Kong SAR and Macau SAR, China, 29 June–03 July 2005, pp 89–94

    Google Scholar 

  48. Hamdi M, Sharma G, Ferreira A, Mavroidis C (2005) Molecular mechanics simulation of bionanorobotic components using force feedback. In: Proceedings of the IEEE international conference on robotics and biomimetics (IEEE ROBIO 2005), Hong Kong SAR and Macau SAR, China, 29 June–03 July 2005, pp 105–110

    Google Scholar 

  49. Hamdi M, Sharma G, Ferreira A, Mavroidis C (2006) Characterization of protein based spring-like elastic joints for biorobotic applications. In: Proceedings of the 2006 IEEE international conference on robotics and automation, Orlando, FL, 15–19 May 2006

    Google Scholar 

  50. Hamdi M, Ferreira A (2008) DNA nanorobotics. Microelectron J 39:1051–1059

    Article  Google Scholar 

  51. Vartholomeos P, Fruchard M, Ferreira A, Mavroidis C (2011) MRI-guided nanorobotic systems for therapeutic and diagnostic applications. Annu Rev Biomed Eng 13:157–184

    Article  Google Scholar 

  52. Martel S, Mathieu JB, Felfoul O, Chanu A, Aboussouan E, Tamaz S, Pouponneau P, Yahia L, Beaudoin G, Soulez G, Mankiewicz M (2008) A computer-assisted protocol for endovascular target interventions using a clinical MRI system for controlling untethered microdevices and future nanorobots. Comput Aided Surg 13(06):340–352

    Article  Google Scholar 

  53. Mathieu J-B, Beaudoin G, Martel S (2006) Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system. IEEE Trans Biomed Eng 53:292–299

    Article  Google Scholar 

  54. Mathieu J-B, Martel S (2007) Magnetic microparticle steering within the constraints of an MRI system: proof of concept of a novel targeting approach. Biomed Microdevices 9:801–808

    Article  Google Scholar 

  55. Martel S, Mathieu J-B, Felfoul O, Chanu A, Aboussouan E, Tamaz S, Pouponneau P, Beaudoin G, Soulez G, L’H Y, Mankiewicz M (2007) Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Appl Phys Lett 90:114105–114108

    Article  Google Scholar 

  56. Zeeshan M, Shou K, Pané S, Pellicer E, Sort J, Sivaraman K, Baró MD, Nelson BJ (2011) Structural and magnetic characterization of batch-fabricated nickel encapsulated multi-walled carbon nanotubes. Nanotechnology 22:275713

    Article  Google Scholar 

  57. Folio D, Dahmen C, Wortmann T, Zeeshan M, Shou K, Pane S, Nelson BJ, Ferreira A, Fatikow S (2011) MRI magnetic signature imaging, tracking and navigation for targeted micro/nano capsule therapeutics. In: IEEE international conference on intelligent robots and systems, San Francisco, 23–29 September 2011

    Google Scholar 

  58. Arcese L, Fruchard M, Ferreira A (2012) Endovascular magnetically-guided robots: navigation, modeling and optimization. IEEE Trans Biomed Eng 59(4):977–987

    Article  Google Scholar 

  59. Belharet K, Folio D, Ferreira A (2011) Three dimensional controlled motion of a microrobot using magnetic gradients. Adv Robot 25:1069–1083

    Article  Google Scholar 

  60. Wortmann T, Dahmen C, Fatikow S (2010) Study of MRI susceptibility artifacts for nanomedical applications. ASME J Nanotechnol Eng Med 1(4):041002

    Article  Google Scholar 

  61. Kummer MP, Abbott JJ, Kratochvil BE, Borer R, Sengul A, Nelson BJ (2010) OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans Robot 26(6):1006–1017

    Article  Google Scholar 

  62. Schürle S, Peyer KE, Kratochvil BE, Nelson BJ (2012) Holonomic 5-DOF magnetic control of 1D nanostructures. In: Proceedings of the 2012 IEEE international conference on robotics and automation, Minnesota, pp 1081–1086

    Google Scholar 

  63. Sitti M (2009) Miniature devices: voyage of the microrobots. Nature 458:1121–1122

    Article  Google Scholar 

  64. Berry RM, Armitage JP (1999) The bacterial flagella motor. Adv Microb Physiol 41:291–337

    Article  Google Scholar 

  65. Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54

    Article  Google Scholar 

  66. Berg HC, Anderson RA (1973) Bacteria swim by rotating their flagellar filaments. Nature 245:380–382

    Article  Google Scholar 

  67. Darnton N, Turner L, Breuer K, Berg HC (2004) Moving fluid with bacterial carpet. Biophys J 86:1863–1870

    Article  Google Scholar 

  68. Steager E, Kim C-B, Patel J, Bith S, Naik C, Reber L, Kim MJ (2007) Control of microfabricated structures powered by flagellated bacteria using phototaxis. Appl Phys Lett 90:263901–263903

    Article  Google Scholar 

  69. Behkam B, Sitti M (2007) Bacterial flagella-based propulsion and on/off motion control of microscale objects. Appl Phys Lett 90:023902–023904

    Article  Google Scholar 

  70. Behkam B, Sitti M (2008) Effect of quantity and configuration of attached bacteria on bacterial propulsion of microbeads. Appl Phys Lett 92:223901

    Article  Google Scholar 

  71. Ardelean I, Ignat M, Moisescu C (2007) Magnetotactic bacteria and their significance for P systems and nanoactuators. In: Gutierrez-Naranjo MA, Paun G, Romero-Jimenez A, Riscos-Nunez A (eds) Proceedings of the 5th brainstorming week on membrane computing, Seville, pp 21–32

    Google Scholar 

  72. Martel S, Tremblay C, Ngakeng S, Langlois G (2006) Controlled manipulation and actuation of microobjects with magnetotactic bacteria. Appl Phys Lett 89:233804–233806

    Article  Google Scholar 

  73. Martel S, Mohammadi M, Felfoul O, Lu Z, Pouponneau P (2009) Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int J Robot Res 28:571–582

    Article  Google Scholar 

  74. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Microscopic artificial swimmers. Nature 437:862–865

    Article  Google Scholar 

  75. Zhang L, Abbott JJ, Dong LX, Peyer KE, Kratochvil BE, Zhang HX, Bergeles C, Nelson BJ (2009) Characterizing the swimming properties of artificial bacterial flagella. Nano Lett 9(10):3663–3667

    Article  Google Scholar 

  76. Zhang L, Peyer KE, Nelson BJ (2010) Artificial bacterial flagella for micromanipulation. Lab Chip 10:2203–2215

    Article  Google Scholar 

  77. Xi N, Fung WK, Yu M, Li G (2005) Augmenting reality system for real-time nanomanipulation using atomic force microscopy. US Patent 6,862,924, 8 Mar 2005

    Google Scholar 

  78. Solomon N (2011) System, methods and apparatuses for integrated circuits for nanorobotics. US Patent 7,921,384, 5 Apr 2011

    Google Scholar 

  79. Jonckheere E, Lou M (2012) Spinal injury imaging by magnetically levitated sensors. US Patent 8,200,310, 12 June 2012

    Google Scholar 

  80. Martel S, Mathieu JB, Yahia L’H, Soulez G, Beaudoin G (2011) Method and system for propelling and controlling displacement of a microrobot in a blood vessel. US Patent 7,962,194, 14 June 2011

    Google Scholar 

  81. Cavalcanti A, Shirinzadeh B, Fukuda T, Ikeda S (2009) Nanorobot for brain aneurysm. Int J Robot Res 28(4):558–570

    Article  Google Scholar 

  82. Cavalcanti A, Shirinzadeh B, Kretly LC (2008) Medical nanorobotics for diabetes control. Nanomedicine 4(2):127–138

    Article  Google Scholar 

  83. Cavalcanti A, Shirinzadeh B, Zhang M, Kretly LC (2008) Nanorobot hardware architecture for medical defense. Sensors 8(5):2932–2958

    Article  Google Scholar 

  84. Cavalcanti A, Shirinzadeh B, Freitas RA Jr, Hogg T (2008) Nanorobot architecture for medical target identification. Nanotechnology 19(1):015103 (15pp)

    Article  Google Scholar 

  85. Tabatabaei SN, Duchemin S, Girouard H, Martel S (2012) Towards MR-navigable nanorobotic carriers for drug delivery into the brain. In: Proceedings of the 2012 IEEE international conference on robotics and automation, Minnesota, pp 727–732

    Google Scholar 

  86. Bergeles C, Shamaei KG, Abbott JJ, Nelson BJ (2010) Single-camera focus-based localization of intraocular devices. IEEE Trans Biomed Eng 57(8):2064–2074

    Article  Google Scholar 

  87. Bergeles C, Kratochvil BE, Nelson BJ (2012) Visually servoing magnetic intraocular microdevices. IEEE Trans Robot. doi:10.1109/TRO.2012.2188165

  88. Clark S (2012) Nanotechnology can launch a new age of space exploration. The Guardian (UK), 17 Apr 2012

    Google Scholar 

  89. Chui B, Kissner L (2000) Nanorobots for Mars EVA Repair. In: Proceedings of the international conference on environmental systems, Toulouse. doi: 10.4271/2000-01-2478

  90. Mavroidis C, Ummat A (2005) Space bionanorobotic systems: design and applications. In: Proceedings of the 7th NASA/DoD conference on evolvable hardware (EH-2005), Washington, DC, 29 June–1 July 2005

    Google Scholar 

  91. Mavroidis C (2006) Bionano machines for space applications. Final Phase II Report to the NASA Institute of Advanced Concepts, July 2006. http://www.coe.neu.edu/Research/robots/papers/NIAC06.pdf

  92. Sanni M, Kamal R, Kanj MY (2008) Reservoir nanorobots. Saudi Aramco J Technol Spring:44–52

    Google Scholar 

  93. Saudi Aramco (2012) Resbots reservoir robots. http://www.saudiaramco.com/content/mobile/en/home/innovation2/innovation-at-saudi-aramco/resbots-reservoir-robots.html?switchToMobile=1

  94. Feynman RP (1959) Plenty of room at the bottom. California Institute of Technology. http://www.its.caltech.edu/~feynman/plenty.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos Mavroidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mavroidis, C., Ferreira, A. (2013). Nanorobotics: Past, Present, and Future. In: Mavroidis, C., Ferreira, A. (eds) Nanorobotics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2119-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2119-1_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-2118-4

  • Online ISBN: 978-1-4614-2119-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics