Skip to main content

Development of Advanced Thermal Management Materials

  • Chapter
  • First Online:
Advanced Thermal Management Materials

Abstract

In this chapter, we will present the development of advanced thermal management materials. First, we will introduce one popular classification of thermal management materials. Next, we will present thermal management materials with an Al–Cu matrix and particle-enhanced materials such as W, Mo, SiC, AlN, BeO, Si, and others with a low coefficient of expansion. The materials covered include WCu, MoCu, AlSiC, Cu/SiC, Cu/Si, and negative thermal expansion materials. In the following section, we will introduce fiber-reinforced thermal management materials such as boron fibers, carbon fibers, Al2O3 fibers, and SiC fibers. The development of a Cu–Cf composite and aluminum graphite materials is presented. Finally, copper/molybdenum/copper (CMC), copper/molybdenum–copper/copper (CPC), and Cu/Invar/Cu (CIC) materials are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zweben C (2006) Thermal materials solve power electronics challenges. Power Electronics Technology, pp 40–47

    Google Scholar 

  2. http://www.advceramics.com/downloads/documents/85505.pdf

  3. German RM, Hons KF, Johnson JL (1994) Powder metallurgy processing of thermal management materials for microelectronic applications. Int J Powder Metall 30(2):205–215

    Google Scholar 

  4. Zweben C (1992) Metal-matrix composites for electronic packaging. JOM 44(7):P15–P24

    Article  Google Scholar 

  5. Zweben C (1998) Advances in composite materials for thermal management in electronic packaging. JOM 50(6):47–51

    Article  Google Scholar 

  6. Yang F, Zhao YM (2001) State of research and development and trend of epoxy resins for electronic packaging. Electron Process Technol 22(6):238–241

    Google Scholar 

  7. Yu X, Wu R, Zhang G (1994) State of research and development and trend of metal matrix composites electronic packaging. Mater Rev 3:64–66

    Google Scholar 

  8. Xia Y, Song Y, Cui S, Lin C, Han S (2008) Preparation of Mo-Cu and W-Cu alloys and performance characteristics. Rare Met 32(2):240–244

    Google Scholar 

  9. Mu K, Kwong Y (2002) Mo-Cu material properties and applications. Metal Functional Mater 9(3):26–29

    Google Scholar 

  10. Zhang J, Hua X, Zhou X (2002) Electronic packaging SiC//Al composite prepared by infiltration and penetration mechanism. Metal Functional Mater 9(1):26–28

    Google Scholar 

  11. Ali ZA, Drury OB, Cunningham MF (2005) Fabrication of Mo/Cu multilayer and bilayer transition edge sensors. IEEE Trans Appl Superconduct 15(2):52–69

    Article  Google Scholar 

  12. Guo-qin C, Long-tao J, Gao-hui W et al (2007) Fabrication and characterization of high density Mo/Cu composites for electronic packaging applications. T Nonferr Metal Soc China 17(1):580–583

    Google Scholar 

  13. Klein TW, Withers PJ (1996) Introduction to metal matrix composites. Metallurgical Industry Press, Beijing, pp 124–125

    Google Scholar 

  14. Johnson JL (1999) Powder metallurgy processing of Mo-Cu for thermal management applications. Int J Powder Metall 35(8):39–48

    Google Scholar 

  15. Hongwei X et al (2005) Interfacial reactions in 3D2SiC network reinforced Cu2 matrix composites prepared by squeeze casting. Mater Lett 59(12):1563

    Article  Google Scholar 

  16. Lin Z et al (2008) Microstructure and thermomechanical properties of pressureless infiltrated SiCp/Cu composites. Compos Sci Technol 68(13):2731

    Article  Google Scholar 

  17. Zhu J, Liu L, Hu G (2004) Composite electroforming of Cu//SiCp composite. Chinese J Nonferr Metal 14(1):84

    Google Scholar 

  18. Hyun-Ki K, Suk Bong K (2006) Thermal decomposition of silicon carbide in a plasma-sprayed Cu/SiC composite deposit. Mat Sci Eng A 428(122):336

    Google Scholar 

  19. Martinez V et al (2003) Wetting of silicon carbide by copper alloys. J Mater Sci 38(19):4047

    Article  Google Scholar 

  20. Yuang-Fa L, Sheng-Long L (1999) Effects of Al additive on the mechanical and physical properties of silicon reinforced copper matrix composites. Scr Mater 41(7):773

    Article  Google Scholar 

  21. Levin L et al (1995) The mechanisms of phase transformation in diffusion couples of the Cu2Si system. Mater Chem Phys 40(1):56

    Article  Google Scholar 

  22. Jun jun C, Yuepeng F, Mingbo T (2008) The latest progress of microelectronic packaging materials. Semicond Tech 33(3):185–189

    Google Scholar 

  23. Hod sont TL (1995) AlN steps up, takes the heat, and delivers. Electron Packag Prod 35(7):26–30

    Google Scholar 

  24. Liang Q, Zhou HP, Fu RL et al (2003) Thermal conductivity of AlN ceramics sintered with CaF2 and YF3. Ceram Int 29:893–897

    Article  Google Scholar 

  25. Larson SE, Slaby J (2004) Comparison of various substrate technologies under steady state and transient conditions. Integrated Electron Syst Sector 2:648–653

    Google Scholar 

  26. Vaed K, Florkey J, Akbar SA et al (2004) An additive micromolding approach for the development of micromachined ceramic substrates for RF applications. J Microelectron Mech Syst 30(13):514–521

    Article  Google Scholar 

  27. Li XL, Ma HA, Zuo GH et al (2007) Low temperatures interring of high density aluminium nitride ceramics without additives at high pressure. Sci Mater 56(12):1015–1018

    Google Scholar 

  28. Zaosheng Z, Zhengya L, Zhiwu C (2008) Ceramic substrates for electronic packaging materials. Mater Guide 22(11):16–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guosheng Jiang .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jiang, G., Diao, L., Kuang, K. (2013). Development of Advanced Thermal Management Materials. In: Advanced Thermal Management Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1963-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1963-1_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1962-4

  • Online ISBN: 978-1-4614-1963-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics