Skip to main content

Targeting CXCR4 in Chronic Lymphocytic Leukemia: Preclinical Rationale and Early Clinical Experience

  • Chapter
  • First Online:
Novel Developments in Stem Cell Mobilization
  • 624 Accesses

Abstract

Chronic lymphocytic leukemia (CLL) cells express high levels of CXCR4, a seven transmembrane G-protein coupled chemokine receptor. Bone marrow stromal cells (BMSCs) and other mesenchymal stromal cells (MSCs) at extramedullary sites constitutively secrete stromal cell-derived factor-1 (SDF-1, now called CXCL12), the ligand for CXCR4. Activation of CXCR4 induces CLL cell migration and homing to the marrow microenvironment, where CXCL12 retains leukemia cells in close contact with BMSC which provide growth and drug-resistance signals. CXCR4 antagonists, such as plerixafor (Mozobil®, AMD3100) and T140 analogs, can disrupt adhesive tumor–stroma interactions and mobilize CLL cells from their protective niches into the blood, making them more accessible to conventional drugs. This approach, to mobilize and then target tumor cells outside of their microenvironment, is also called “chemo-sensitization.” The CXCR4–CXCL12 axis is now targeted in a first, ongoing clinical trial in CLL patients who are treated with plerixafor in combination with the anti-CD20 antibody rituximab. The fact that CLL cells express high levels of CXCR4 and readily respond to CXCL12, along with easy access to circulating leukemia cells for monitoring of leukemia cell mobilization, makes CLL a particularly well-suited disease model for studying the effects of CXCR4 antagonists in leukemia. This chapter summarizes preclinical and preliminary clinical experience with CXCR4 antagonists in CLL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murphy PM (2001) Chemokines and the molecular basis of cancer metastasis. N Engl J Med 345(11):833–835

    Article  PubMed  CAS  Google Scholar 

  2. Moser B, Wolf M, Walz A, Loetscher P (2004) Chemokines: multiple levels of leukocyte migration control. Trends Immunol 25(2):75–84

    Article  PubMed  CAS  Google Scholar 

  3. Thelen M, Peveri P, Kernen P, von Tscharner V, Walz A, Baggiolini M (1988) Mechanism of neutrophil activation by NAF, a novel monocyte-derived peptide agonist. FASEB J 2(11):2702–2706

    PubMed  CAS  Google Scholar 

  4. Kunkel SL, Strieter RM, Lindley IJ, Westwick J (1995) Chemokines: new ligands, receptors and activities. Immunol Today 16(12):559–561

    Article  PubMed  CAS  Google Scholar 

  5. Rossi D, Zlotnik A (2000) The biology of chemokines and their receptors. Annu Rev Immunol 18:217–242

    Article  PubMed  CAS  Google Scholar 

  6. Muller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56

    Article  PubMed  CAS  Google Scholar 

  7. Zlotnik A (2006) Chemokines and cancer. Int J Cancer 119(9):2026–2029

    Article  PubMed  CAS  Google Scholar 

  8. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4(7):540–550

    Article  PubMed  CAS  Google Scholar 

  9. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12(2):121–127

    Article  PubMed  CAS  Google Scholar 

  10. Bleul CC, Farzan M, Choe H et al (1996) The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382(6594):829–833

    Article  PubMed  CAS  Google Scholar 

  11. Oberlin E, Amara A, Bachelerie F et al (1996) The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1 [published erratum appears in Nature 1996 Nov 21;384(6606):288]. Nature 382(6594):833–835

    Article  PubMed  CAS  Google Scholar 

  12. Nagasawa T, Kikutani H, Kishimoto T (1994) Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci USA 91(6):2305–2309

    Article  PubMed  CAS  Google Scholar 

  13. Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA (1996) A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1) [see comments]. J Exp Med 184(3):1101–1109

    Article  PubMed  CAS  Google Scholar 

  14. Feng Y, Broder CC, Kennedy PE, Berger EA (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor [see comments]. Science 272(5263):872–877

    Article  PubMed  CAS  Google Scholar 

  15. Nagasawa T, Hirota S, Tachibana K et al (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382(6592):635–638

    Article  PubMed  CAS  Google Scholar 

  16. Nagasawa T, Tachibana K, Kishimoto T (1998) A novel CXC chemokine PBSF/SDF-1 and its receptor CXCR4: their functions in development, hematopoiesis and HIV infection. Semin Immunol 10(3):179–185

    Article  PubMed  CAS  Google Scholar 

  17. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development [see comments]. Nature 393(6685):595–599

    Article  PubMed  CAS  Google Scholar 

  18. Ma Q, Jones D, Borghesani PR et al (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 95(16):9448–9453

    Article  PubMed  CAS  Google Scholar 

  19. Boldajipour B, Mahabaleshwar H, Kardash E et al (2008) Control of chemokine-guided cell migration by ligand sequestration. Cell 132(3):463–473

    Article  PubMed  CAS  Google Scholar 

  20. Naumann U, Cameroni E, Pruenster M et al (2010) CXCR7 functions as a scavenger for CXCL12 and CXCL11. PLoS One 5(2):e9175

    Article  PubMed  CAS  Google Scholar 

  21. Rajagopal S, Kim J, Ahn S et al (2010) Beta-arrestin- but not G protein-mediated signaling by the “decoy” receptor CXCR7. Proc Natl Acad Sci USA 107(2):628–632

    Article  PubMed  Google Scholar 

  22. Peled A, Grabovsky V, Habler L et al (1999) The chemokine SDF-1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow. J Clin Invest 104(9):1199–1211

    Article  PubMed  CAS  Google Scholar 

  23. Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25(6):977–988

    Article  PubMed  CAS  Google Scholar 

  24. Peled A, Petit I, Kollet O et al (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283(5403):845–848

    Article  PubMed  CAS  Google Scholar 

  25. Sipkins DA, Wei X, Wu JW et al (2005) In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435(7044):969–973

    Article  PubMed  CAS  Google Scholar 

  26. Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL (2002) Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J Exp Med 195(9):1145–1154

    Article  PubMed  CAS  Google Scholar 

  27. Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311(5769):1880–1885

    Article  PubMed  CAS  Google Scholar 

  28. Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132(4):598–611

    Article  PubMed  CAS  Google Scholar 

  29. Mendez-Ferrer S, Michurina TV, Ferraro F et al (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834

    Article  PubMed  CAS  Google Scholar 

  30. Nagasawa T (2008) New niches for B cells. Nat Immunol 9(4):345–346

    Article  PubMed  CAS  Google Scholar 

  31. Omatsu Y, Sugiyama T, Kohara H et al (2010) The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33(3):387–399

    Article  PubMed  CAS  Google Scholar 

  32. Katayama Y, Battista M, Kao WM et al (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124(2):407–421

    Article  PubMed  CAS  Google Scholar 

  33. Burger JA, Peled A (2009) CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia 23(1):43–52

    Article  PubMed  CAS  Google Scholar 

  34. Thelen M (2001) Dancing to the tune of chemokines. Nat Immunol 2(2):129–134

    Article  PubMed  CAS  Google Scholar 

  35. Tan W, Martin D, Gutkind JS (2006) The Galpha13-Rho signaling axis is required for SDF-1-induced migration through CXCR4. J Biol Chem 281(51):39542–39549

    Article  PubMed  CAS  Google Scholar 

  36. Soede RD, Zeelenberg IS, Wijnands YM, Kamp M, Roos E (2001) Stromal cell-derived factor-1-induced LFA-1 activation during in vivo migration of T cell hybridoma cells requires Gq/11, RhoA, and myosin, as well as Gi and Cdc42. J Immunol 166(7):4293–4301

    PubMed  CAS  Google Scholar 

  37. Bleul CC, Schultze JL, Springer TA (1998) B lymphocyte chemotaxis regulated in association with microanatomic localization, differentiation state, and B cell receptor engagement. J Exp Med 187(5):753–762

    Article  PubMed  CAS  Google Scholar 

  38. Guinamard R, Signoret N, Masamichi I, Marsh M, Kurosaki T, Ravetch JV (1999) B cell antigen receptor engagement inhibits stromal cell-derived factor (SDF)-1alpha chemotaxis and promotes protein kinase C (PKC)-induced internalization of CXCR4. J Exp Med 189(9):1461–1466

    Article  PubMed  CAS  Google Scholar 

  39. Quiroga MP, Balakrishnan K, Kurtova AV et al (2009) B-cell antigen receptor signaling enhances chronic lymphocytic leukemia cell migration and survival: specific targeting with a novel spleen tyrosine kinase inhibitor, R406. Blood 114(5):1029–1037

    Article  PubMed  CAS  Google Scholar 

  40. Wu B, Chien EY, Mol CD et al (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330(6007):1066–1071

    Article  PubMed  CAS  Google Scholar 

  41. Harrison C (2010) G protein-coupled receptors: insights into chemokine receptors. Nat Rev Drug Discov 9(12):920

    Article  PubMed  CAS  Google Scholar 

  42. Kumar A, Kremer KN, Dominguez D, Tadi M, Hedin KE (2011) Galpha13 and Rho mediate endosomal trafficking of CXCR4 into Rab11+ vesicles upon stromal cell-derived factor-1 stimulation. J Immunol 186(2):951–958

    Article  PubMed  CAS  Google Scholar 

  43. Honczarenko M, Douglas RS, Mathias C, Lee B, Ratajczak MZ, Silberstein LE (1999) SDF-1 responsiveness does not correlate with CXCR4 expression levels of developing human bone marrow B cells. Blood 94(9):2990–2998

    PubMed  CAS  Google Scholar 

  44. Le Y, Zhu BM, Harley B et al (2007) SOCS3 protein developmentally regulates the chemokine receptor CXCR4-FAK signaling pathway during B lymphopoiesis. Immunity 27(5):811–823

    Article  PubMed  CAS  Google Scholar 

  45. Martin C, Burdon PC, Bridger G, Gutierrez-Ramos JC, Williams TJ, Rankin SM (2003) Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 19(4):583–593

    Article  PubMed  CAS  Google Scholar 

  46. Ma Q, Jones D, Springer TA (1999) The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 10(4):463–471

    Article  PubMed  CAS  Google Scholar 

  47. Hargreaves DC, Hyman PL, Lu TT et al (2001) A coordinated change in chemokine responsiveness guides plasma cell movements. J Exp Med 194(1):45–56

    Article  PubMed  CAS  Google Scholar 

  48. Cyster JG (2003) Homing of antibody secreting cells. Immunol Rev 194:48–60

    Article  PubMed  CAS  Google Scholar 

  49. Alsayed Y, Ngo H, Runnels J et al (2007) Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood 109(7):2708–2717

    PubMed  CAS  Google Scholar 

  50. Hernandez PA, Gorlin RJ, Lukens JN et al (2003) Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 34(1):70–74

    Article  PubMed  CAS  Google Scholar 

  51. Kawai T, Choi U, Cardwell L et al (2007) WHIM syndrome myelokathexis reproduced in the NOD/SCID mouse xenotransplant model engrafted with healthy human stem cells transduced with C-terminus-truncated CXCR4. Blood 109(1):78–84

    Article  PubMed  CAS  Google Scholar 

  52. Burger JA, Burger M, Kipps TJ (1999) Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood 94(11):3658–3667

    PubMed  CAS  Google Scholar 

  53. Mohle R, Failenschmid C, Bautz F, Kanz L (1999) Overexpression of the chemokine receptor CXCR4 in B cell chronic lymphocytic leukemia is associated with increased functional response to stromal cell-derived factor-1 (SDF-1). Leukemia 13(12):1954–1959

    Article  PubMed  CAS  Google Scholar 

  54. Durig J, Schmucker U, Duhrsen U (2001) Differential expression of chemokine receptors in B cell malignancies. Leukemia 15(5):752–756

    Article  PubMed  CAS  Google Scholar 

  55. Barretina J, Junca J, Llano A et al (2003) CXCR4 and SDF-1 expression in B-cell chronic lymphocytic leukemia and stage of the disease. Ann Hematol 82(8):500–505

    Article  PubMed  CAS  Google Scholar 

  56. Ghobrial IM, Bone ND, Stenson MJ et al (2004) Expression of the chemokine receptors CXCR4 and CCR7 and disease progression in B-cell chronic lymphocytic leukemia/ small lymphocytic lymphoma. Mayo Clin Proc 79(3):318–325

    Article  PubMed  CAS  Google Scholar 

  57. Calissano C, Damle RN, Hayes G et al (2009) In vivo intraclonal and interclonal kinetic heterogeneity in B-cell chronic lymphocytic leukemia. Blood 114(23):4832–4842

    Article  PubMed  CAS  Google Scholar 

  58. Herishanu Y, Perez-Galan P, Liu D et al (2011) The lymph node microenvironment promotes B-cell receptor signaling, NF-{kappa}B activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 117(2):563–574

    Article  PubMed  CAS  Google Scholar 

  59. Bennett F, Rawstron A, Plummer M et al (2007) B-cell chronic lymphocytic leukaemia cells show specific changes in membrane protein expression during different stages of cell cycle. Br J Haematol 139(4):600–604

    Article  PubMed  Google Scholar 

  60. Till KJ, Lin K, Zuzel M, Cawley JC (2002) The chemokine receptor CCR7 and alpha4 integrin are important for migration of chronic lymphocytic leukemia cells into lymph nodes. Blood 99(8):2977–2984

    Article  PubMed  CAS  Google Scholar 

  61. Trentin L, Cabrelle A, Facco M et al (2004) Homeostatic chemokines drive migration of malignant B cells in patients with non-Hodgkin lymphomas. Blood 104(2):502–508

    Article  PubMed  CAS  Google Scholar 

  62. Burger JA, Tsukada N, Burger M, Zvaifler NJ, Dell’Aquila M, Kipps TJ (2000) Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood 96(8):2655–2663

    PubMed  CAS  Google Scholar 

  63. Nishio M, Endo T, Tsukada N et al (2005) Nurselike cells express BAFF and APRIL, which can promote survival of chronic lymphocytic leukemia cells via a paracrine pathway distinct from that of SDF-1alpha. Blood 106(3):1012–1020

    Article  PubMed  CAS  Google Scholar 

  64. Richardson SJ, Matthews C, Catherwood MA et al (2006) ZAP-70 expression is associated with enhanced ability to respond to migratory and survival signals in B-cell chronic lymphocytic leukemia (B-CLL). Blood 107(9):3584–3592

    Article  PubMed  CAS  Google Scholar 

  65. Vlad A, Deglesne PA, Letestu R et al (2009) Down-regulation of CXCR4 and CD62L in chronic lymphocytic leukemia cells is triggered by B-cell receptor ligation and associated with progressive disease. Cancer Res 69(16):6387–6395

    Article  PubMed  CAS  Google Scholar 

  66. Chen L, Widhopf G, Huynh L et al (2002) Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood 100(13):4609–4614

    Article  PubMed  CAS  Google Scholar 

  67. Deaglio S, Vaisitti T, Aydin S et al (2007) CD38 and ZAP-70 are functionally linked and mark CLL cells with high migratory potential. Blood 110(12):4012–4021

    Article  PubMed  CAS  Google Scholar 

  68. Vaisitti T, Aydin S, Rossi D, et al (2010) CD38 increases CXCL12-mediated signals and homing of chronic lymphocytic leukemia cells. Leukemia 24(5):958–969

    Google Scholar 

  69. Burger M, Hartmann T, Krome M et al (2005) Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood 106(5):1824–1830

    Article  PubMed  CAS  Google Scholar 

  70. Niedermeier M, Hennessy BT, Knight ZA et al (2009) Isoform-selective phosphoinositide 3′-kinase inhibitors inhibit CXCR4 signaling and overcome stromal cell-mediated drug resistance in chronic lymphocytic leukemia: a novel therapeutic approach. Blood 113(22):5549–5557

    Article  PubMed  CAS  Google Scholar 

  71. Kurtova AV, Balakrishnan K, Chen R et al (2009) Diverse marrow stromal cells protect CLL cells from spontaneous and drug-induced apoptosis: development of a reliable and reproducible system to assess stromal cell adhesion-mediated drug resistance. Blood 114(20):4441–4450

    Article  PubMed  CAS  Google Scholar 

  72. Rawstron AC, Kennedy B, Evans PA et al (2001) Quantitation of minimal disease levels in chronic lymphocytic leukemia using a sensitive flow cytometric assay improves the prediction of outcome and can be used to optimize therapy. Blood 98(1):29–35

    Article  PubMed  CAS  Google Scholar 

  73. Burger JA, Kipps TJ (2006) CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107(5):1761–1767

    Article  PubMed  CAS  Google Scholar 

  74. Burger JA, Burkle A (2007) The CXCR4 chemokine receptor in acute and chronic leukaemia: a marrow homing receptor and potential therapeutic target. Br J Haematol 137(4):288–296

    Article  PubMed  CAS  Google Scholar 

  75. Orimo A, Weinberg RA (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5(15):1597–1601

    Article  PubMed  CAS  Google Scholar 

  76. Liotta LA (2001) An attractive force in metastasis. Nature 410(6824):24–25

    Article  PubMed  CAS  Google Scholar 

  77. Orimo A, Gupta PB, Sgroi DC et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348

    Article  PubMed  CAS  Google Scholar 

  78. Burger M, Glodek A, Hartmann T et al (2003) Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene 22(50):8093–8101

    Article  PubMed  CAS  Google Scholar 

  79. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS (1999) Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93(5):1658–1667

    PubMed  CAS  Google Scholar 

  80. Li ZW, Dalton WS (2006) Tumor microenvironment and drug resistance in hematologic malignancies. Blood Rev 20(6):333–342

    Google Scholar 

  81. Ramasamy R, Lam EW, Soeiro I, Tisato V, Bonnet D, Dazzi F (2007) Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia 21(2):304–310

    Article  PubMed  CAS  Google Scholar 

  82. Maestroni GJ, Hertens E, Galli P (1999) Factor(s) from nonmacrophage bone marrow stromal cells inhibit Lewis lung carcinoma and B16 melanoma growth in mice. Cell Mol Life Sci 55(4):663–667

    Article  PubMed  CAS  Google Scholar 

  83. Ohlsson LB, Varas L, Kjellman C, Edvardsen K, Lindvall M (2003) Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp Mol Pathol 75(3):248–255

    Article  PubMed  CAS  Google Scholar 

  84. Pisati F, Belicchi M, Acerbi F et al (2007) Effect of human skin-derived stem cells on vessel architecture, tumor growth, and tumor invasion in brain tumor animal models. Cancer Res 67(7):3054–3063

    Article  PubMed  CAS  Google Scholar 

  85. Khakoo AY, Pati S, Anderson SA et al (2006) Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med 203(5):1235–1247

    Article  PubMed  CAS  Google Scholar 

  86. Laird DJ, von Andrian UH, Wagers AJ (2008) Stem cell trafficking in tissue development, growth, and disease. Cell 132(4):612–630

    Article  PubMed  CAS  Google Scholar 

  87. Nakashima H, Masuda M, Murakami T et al (1992) Anti-human immunodeficiency virus activity of a novel synthetic peptide, T22 ([Tyr-5,12, Lys-7]polyphemusin II): a possible inhibitor of virus-cell fusion. Antimicrob Agent Chemother 36(6):1249–1255

    CAS  Google Scholar 

  88. Masuda M, Nakashima H, Ueda T et al (1992) A novel anti-HIV synthetic peptide, T-22 ([Tyr5,12, Lys7]-polyphemusin II). Biochem Biophys Res Commun 189(2):845–850

    Article  PubMed  CAS  Google Scholar 

  89. De Clercq E, Yamamoto N, Pauwels R et al (1992) Potent and selective inhibition of human immunodeficiency virus (HIV)-1 and HIV-2 replication by a class of bicyclams interacting with a viral uncoating event. Proc Natl Acad Sci USA 89(12):5286–5290

    Article  PubMed  Google Scholar 

  90. De Clercq E, Yamamoto N, Pauwels R et al (1994) Highly potent and selective inhibition of human immunodeficiency virus by the bicyclam derivative JM3100. Antimicrob Agent Chemother 38(4):668–674

    Google Scholar 

  91. Doranz BJ, Filion LG, Diaz-Mitoma F et al (2001) Safe use of the CXCR4 inhibitor ALX40-4C in humans. AIDS Res Hum Retroviruses 17(6):475–486

    Article  PubMed  CAS  Google Scholar 

  92. Doranz BJ, Grovit-Ferbas K, Sharron MP et al (1997) A small-molecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 coreceptor. J Exp Med 186(8):1395–1400

    Article  PubMed  CAS  Google Scholar 

  93. Schols D, Struyf S, Van Damme J, Este JA, Henson G, De Clercq E (1997) Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. J Exp Med 186(8):1383–1388

    Article  PubMed  CAS  Google Scholar 

  94. Murakami T, Nakajima T, Koyanagi Y et al (1997) A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection. J Exp Med 186(8):1389–1393

    Article  PubMed  CAS  Google Scholar 

  95. Tamamura H, Xu Y, Hattori T et al (1998) A low-molecular-weight inhibitor against the chemokine receptor CXCR4: a strong anti-HIV peptide T140. Biochem Biophys Res Commun 253(3):877–882

    Article  PubMed  CAS  Google Scholar 

  96. Tamamura H, Omagari A, Hiramatsu K et al (2001) Development of specific CXCR4 inhibitors possessing high selectivity indexes as well as complete stability in serum based on an anti-HIV peptide T140. Bioorg Med Chem Lett 11(14):1897–1902

    Article  PubMed  CAS  Google Scholar 

  97. Trent JO, Wang ZX, Murray JL et al (2003) Lipid bilayer simulations of CXCR4 with inverse agonists and weak partial agonists. J Biol Chem 278(47):47136–47144

    Article  PubMed  CAS  Google Scholar 

  98. Zhang WB, Navenot JM, Haribabu B et al (2002) A point mutation that confers constitutive activity to CXCR4 reveals that T140 is an inverse agonist and that AMD3100 and ALX40-4C are weak partial agonists. J Biol Chem 277(27):24515–24521

    Article  PubMed  CAS  Google Scholar 

  99. Tamamura H, Hori A, Kanzaki N et al (2003) T140 analogs as CXCR4 antagonists identified as anti-metastatic agents in the treatment of breast cancer. FEBS Lett 550(1–3):79–83

    Article  PubMed  CAS  Google Scholar 

  100. Takenaga M, Tamamura H, Hiramatsu K et al (2004) A single treatment with microcapsules containing a CXCR4 antagonist suppresses pulmonary metastasis of murine melanoma. Biochem Biophys Res Commun 320(1):226–232

    Article  PubMed  CAS  Google Scholar 

  101. Tamamura H, Fujisawa M, Hiramatsu K et al (2004) Identification of a CXCR4 antagonist, a T140 analog, as an anti-rheumatoid arthritis agent. FEBS Lett 569(1–3):99–104

    Article  PubMed  CAS  Google Scholar 

  102. Abraham M, Biyder K, Begin M et al (2007) Enhanced unique pattern of hematopoietic cell mobilization induced by the CXCR4 antagonist 4F-benzoyl-TN14003. Stem Cell 25(9):2158–2166

    Article  CAS  Google Scholar 

  103. Juarez J, Bradstock KF, Gottlieb DJ, Bendall LJ (2003) Effects of inhibitors of the chemokine receptor CXCR4 on acute lymphoblastic leukemia cells in vitro. Leukemia 17(7): 1294–1300

    Article  PubMed  CAS  Google Scholar 

  104. Juarez J, Dela Pena A, Baraz R et al (2007) CXCR4 antagonists mobilize childhood acute lymphoblastic leukemia cells into the peripheral blood and inhibit engraftment. Leukemia 21(6):1249–1257

    Article  PubMed  CAS  Google Scholar 

  105. Zannettino AC, Farrugia AN, Kortesidis A et al (2005) Elevated serum levels of stromal-derived factor-1alpha are associated with increased osteoclast activity and osteolytic bone disease in multiple myeloma patients. Cancer Res 65(5):1700–1709

    Article  PubMed  CAS  Google Scholar 

  106. Mori Y, Shimizu N, Dallas M et al (2004) Anti-alpha4 integrin antibody suppresses the development of multiple myeloma and associated osteoclastic osteolysis. Blood 104(7): 2149–2154

    Article  PubMed  CAS  Google Scholar 

  107. Kohara H, Omatsu Y, Sugiyama T, Noda M, Fujii N, Nagasawa T (2007) Development of plasmacytoid dendritic cells in bone marrow stromal cell niches requires CXCL12-CXCR4 chemokine signaling. Blood 110(13):4153–4160.

    Google Scholar 

  108. Kabashima K, Shiraishi N, Sugita K et al (2007) CXCL12–CXCR4 engagement is required for migration of cutaneous dendritic cells. Am J Pathol 171(4):1249–1257

    Article  PubMed  CAS  Google Scholar 

  109. Allen CD, Ansel KM, Low C et al (2004) Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat Immunol 5(9):943–952

    Article  PubMed  CAS  Google Scholar 

  110. Petit I, Szyper-Kravitz M, Nagler A et al (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3(7):687–694

    Article  PubMed  CAS  Google Scholar 

  111. De Clercq E (2003) The bicyclam AMD3100 story. Nat Rev Drug Discov 2(7):581–587

    Article  PubMed  CAS  Google Scholar 

  112. Fricker SP, Anastassov V, Cox J et al (2006) Characterization of the molecular pharmacology of AMD3100: a specific antagonist of the G-protein coupled chemokine receptor, CXCR4. Biochem Pharmacol 72(5):588–596

    Article  PubMed  CAS  Google Scholar 

  113. Donzella GA, Schols D, Lin SW et al (1998) AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat Med 4(1):72–77

    Article  PubMed  CAS  Google Scholar 

  114. Hendrix CW, Flexner C, MacFarland RT et al (2000) Pharmacokinetics and safety of AMD-3100, a novel antagonist of the CXCR-4 chemokine receptor, in human volunteers. Antimicrob Agent Chemother 44(6):1667–1673

    Article  CAS  Google Scholar 

  115. Hendrix CW, Collier AC, Lederman MM et al (2004) Safety, pharmacokinetics, and antiviral activity of AMD3100, a selective CXCR4 receptor inhibitor, in HIV-1 infection. J Acquir Immune Defic Syndr 37(2):1253–1262

    Article  PubMed  CAS  Google Scholar 

  116. Broxmeyer HE, Orschell CM, Clapp DW et al (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201(8):1307–1318

    Article  PubMed  CAS  Google Scholar 

  117. Liles WC, Broxmeyer HE, Rodger E et al (2003) Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 102(8):2728–2730

    Article  PubMed  CAS  Google Scholar 

  118. Devine SM, Flomenberg N, Vesole DH et al (2004) Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin’s lymphoma. J Clin Oncol 22(6):1095–1102

    Article  PubMed  CAS  Google Scholar 

  119. Andritsos LA, Byrd JC, Hewes B, Kipps TJ, Johns D, Burger JA (2010) Preliminary results from a phase I/II dose escalation study to determine the maximum tolerated dose of plerixafor in combination with rituximab in patients with relapsed chronic lymphocytic leukemia. Haematologica 95(suppl. 2):Abstract 0772; p. 321

    Google Scholar 

  120. Andritsos L, Byrd JC, Jones JA et al (2010) Preliminary results from a phase I dose escalation study to determine the maximum tolerated dose of plerixafor in combination with rituximab in patients with relapsed chronic lymphocytic leukemia. Blood 116(21):1017a

    Google Scholar 

Download references

Acknowledgments

This study was supported by an ASCO Career Development Award, a CLL Global Research Foundation grant, and a Cancer Prevention and Research Institute of Texas (CPRIT) research award (to J.A.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan A. Burger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Burger, J.A. (2012). Targeting CXCR4 in Chronic Lymphocytic Leukemia: Preclinical Rationale and Early Clinical Experience. In: Fruehauf, S., Zeller, W., Calandra, G. (eds) Novel Developments in Stem Cell Mobilization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1960-0_19

Download citation

Publish with us

Policies and ethics