Skip to main content

Contact Mechanics

  • Chapter
  • First Online:
Tribology for Scientists and Engineers

Abstract

Contact mechanics is a fundamental field of tribology and generally refers to the interaction of solid surfaces. This interaction or contact can occur on many different scales, ranging from nanoscale asperities up to tires on roads and even contact between tectonic plates. This chapter reviews the basic technical information available in predicting the contact area, pressure, stresses, and forces that occur when surfaces interact. The chapter considers different geometries such as spheres and wavy surfaces and also outlines how to consider elastic and plastic deformation. The phenomena of creep and adhesion that are important for many tribological applications, and especially biological contacts, are also discussed. Finally, the chapter concludes by covering methods used to model the complicated situation of contact between rough surfaces that contain many different geometrical features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this notation, the colon (:) marks a reduction of the full tensor grade by 2; i.e., a multiplication of a tensor of the fourth grade with a tensor of the second grade yields a tensor of second grade.

Abbreviations

a :

Radius of circular contact area

A :

Area of contact

An :

Nominal or apparent area of contact

b :

Cylindrical contact half width

B :

Aspect ratio

C :

Critical yield stress coefficient

Cn :

Creep material constant

d :

Distance between the mean of the surface peaks and a material and geometry dependent exponent

e :

Coefficient of restitution during impact

e y :

Plastic strain (ratio of yield strength to effective elastic modulus)

E :

Elastic modulus

E′:

Reduced or effective elastic modulus

f :

Spatial frequency (reciprocal of wavelength)

F :

Contact force

h :

Height of sinusoidal surface from base and distance between the mean of the surface heights

i :

Scale or frequency number

I :

Statistical contact integral

H :

Hardness or normalized layer thickness

L :

Length of cylindrical contact

m :

Mass of impact sphere

m n :

nth spectral moment of the surface

N :

Number of asperities or data points on surfaces

p :

Average pressure over entire sinusoidal surface in contact

p*:

Average pressure for complete contact (elastic)

p * ep :

Average pressure for complete contact (elastoplastic)

p ave :

Average pressure over entire asperity

P :

Spherical contact force

Q max :

Tangential load required cause sliding

R :

Radius of cylinder or sphere or asperity tip

S y :

Yield strength

t :

Time or layer thickness

T :

Temperature

V :

Velocity

W nm :

Work of adhesion between surfaces n and m

x :

Lateral surface coordinate

y s :

Distance between the mean of the surface peaks and mean of the surface heights

z :

Surface height at location x

α :

Layer model parameter and statistical contact parameter

β :

Exponential creep material constant and surface roughness parameter

γ n :

Surface energy of surface n

γ nm :

Interfacial energy between surfaces n and m

Δ:

Amplitude of the sinusoidal surface

δ:

Deflection of cylindrical or sinusoidal asperity surface

ε :

Strain

θa :

Adhesion parameter

κ :

Layer model parameter

λ:

Asperity wavelength or layer model parameter

μ :

Effective static friction coefficient

η :

Areal asperity density

φ :

Asperity height distribution

σ:

Normal stress and RMS surface roughness

σ s :

The RMS roughness of the asperity peak heights

v :

Poisson’s ratio

ω :

Deflection or interference of spherical contact

ψ:

Plasticity index

o :

Initial or at t = 0

1, 2 :

Property for material 1, 2, etc.

c :

Critical value at onset of plastic deformation

cr :

Creep dependent parameter

a :

Elastic area

ep :

Elastic-plastic

max :

Maximum

n :

Normal direction and nominal or apparent area of contact

p :

Elastic-plastic or elastic pressure integral

r :

Real area of contact

t :

Tangential

References

  1. Archard JF (1957) Elastic deformation and the laws of friction. Proc R Soc Lond A 243:190–205

    Article  Google Scholar 

  2. Tabor D (1951) The hardness of materials. Clarendon, Oxford

    Google Scholar 

  3. Greenwood JA, Williamson JBP (1966) Contact of nominally flat surfaces. Proc R Soc Lond A 295(1442):300–319

    Article  Google Scholar 

  4. Johnson KL (1985) Contact mechanics. Cambridge University Press, New York

    Book  Google Scholar 

  5. Johnson KL (1982) One hundred years of hertz contact. Proc Inst Mech Eng 196(1):363–378

    Article  Google Scholar 

  6. Hamrock BJ (1994) Fundamentals of fluid film lubrication. Mcgraw-Hill, Inc., New York

    Google Scholar 

  7. Green I (2005) Poisson ratio effects and critical values in spherical and cylindrical Hertzian contacts. Int J Appl Mech Eng 10(3):451–462

    Google Scholar 

  8. Vijaywargiya R, Green I (2007) A finite element study of the deformation, forces, stress formation, and energy loss in sliding cylindrical contacts. Int J Non-Linear Mech 42:914–927

    Article  Google Scholar 

  9. Chang WR, Etsion I, Bogy DB (1987) An elastic–plastic model for the contact of rough surfaces. ASME J Tribol 109(2):257–263

    Article  Google Scholar 

  10. Zhao Y, Maletta DM, Chang L (2000) An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. ASME J Tribol 122(1):86–93

    Article  Google Scholar 

  11. Kogut L, Etsion I (2002) Elastic–plastic contact analysis of a sphere and a rigid flat. ASME J Appl Mech 69(5):657–662

    Article  Google Scholar 

  12. Jackson RL, Green I (2005) A finite element study of elasto-plastic hemispherical contact. ASME J Tribol 127(2):343–354

    Article  Google Scholar 

  13. Wadwalkar SS, Jackson RL, Kogut L (2010) A study of the elastic–plastic deformation of heavily deformed spherical contacts. IMechE Part J, J Eng Tribol 224(10):1091–1102

    Article  Google Scholar 

  14. Jackson RL, Chusoipin I, Green I (2005) A finite element study of the residual stress and strain formation in spherical contacts. ASME J Tribol 127(3):484–493

    Article  Google Scholar 

  15. Etsion I, Kligerman Y, Kadin Y (2005) Unloading of an elastic–plastic loaded spherical contact. Int J Solids Struct 42(13):3716–3729

    Article  Google Scholar 

  16. Quicksall JJ, Jackson RL, Green I (2004) Elasto-plastic hemispherical contact models for various mechanical properties. IMechE J Eng Trib Part J 218(4):313–322

    Article  Google Scholar 

  17. Jackson RL, Kogut L (2006) A comparison of flattening and indentation approaches for contact mechanics modeling of single asperity contacts. ASME J Tribol 128(1):209–212

    Article  Google Scholar 

  18. Kogut L, Komvopoulos K (2004) Analysis of spherical indentation cycle of elastic-perfectly plastic solids. J Mater Res 19:3641–3653

    Article  Google Scholar 

  19. Westergaard HM (1939) Bearing pressures and cracks. ASME J Appl Mech 6:49–53

    Google Scholar 

  20. Johnson KL, Greenwood JA, Higginson JG (1985) The contact of elastic regular wavy surfaces. Int J Mech Sci 27(6):383–396

    Article  Google Scholar 

  21. Jackson RL, Streator JL (2006) A multiscale model for contact between rough surfaces. Wear 261(11–12):1337–1347

    Article  Google Scholar 

  22. Shah S, Krithivasan V, Jackson RL (2011) An electro-mechanical contact analysis of a three-dimensional sinusoidal surface against a rigid flat. Wear 270:914–921

    Article  Google Scholar 

  23. Krithivasan V, Jackson RL (2007) An analysis of three-dimensional elasto-plastic sinusoidal contact. Trib Lett 27(1):31–43

    Article  Google Scholar 

  24. Jackson RL, Krithivasan V, Wilson WE (2008) The pressure to cause complete contact between elastic plastic sinusoidal surfaces. IMechE J Eng Trib Part J 222(7):857–864

    Article  Google Scholar 

  25. Chaise T, Nélias D, Sadeghi F (2011) On the effect of isotropic hardening on the coefficient of restitution for single or repeated impacts using a semi-analytical method. Tribol Trans 54(5):714–722

    Article  Google Scholar 

  26. Israelachvili JN (1991) Intermolecular and surface forces, 2nd edn. Academic, San Diego, CA

    Google Scholar 

  27. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc Roy Soc Lond Ser A (Math Phys Sci) 324(1558):301–313

    Article  Google Scholar 

  28. Bradley R (1932) The cohesive force between solid surfaces and the surface energy of solids. Phil Mag Ser 7 13(86):853–862

    Google Scholar 

  29. Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on adhesion of particles. J Colloid Interface Sci 53(2):314–326

    Article  Google Scholar 

  30. Muller VM, Derjaguin BV, Toporov YP (1983) On two methods of calculation of the force of sticking of an elastic sphere to a rigid plane. Colloids Surf 7(3):251–259

    Article  Google Scholar 

  31. Tabor D (1977) Surface forces and surface interactions. J Colloid Interface Sci 58(1):2–13

    Article  Google Scholar 

  32. Maugis D (1992) Adhesion of spheres: the JKR-DMT transition using a dugdale model. J Colloid Interface Sci 150(1):243

    Article  Google Scholar 

  33. Carpick RW, Ogletree DF, Salmeron M (1999) A general equation for fitting contact area and friction vs load measurements. J Colloid Interface Sci 211:395–400

    Article  Google Scholar 

  34. Fuller KNG, Tabor D (1975) The effect of surface roughness on the adhesion of elastic solids. Proc R Soc Lond A Math Phys Sci 345:327–342

    Article  Google Scholar 

  35. Liu SB et al (2005) An extension of the Hertz theory for three-dimensional coated bodies. Tribol Lett 18(3):303–314

    Article  Google Scholar 

  36. Gittus J (1975) Creep Viscoelasticity and creep fracture in solids, Applied Science Publishers, London

    Google Scholar 

  37. Goedecke A, Jackson RL, Mock R (2010) Asperity creep under constant force boundary conditions. Wear 268(11):1285–1294

    Article  Google Scholar 

  38. Brot C, Etsion I, Kligerman Y (2008) A contact model for a creeping sphere and a rigid flat. Wear 265(5):598–605

    Article  Google Scholar 

  39. Tomlins P (1996) Comparison of different functions for modelling the creep and physical ageing effects in plastics. Polymer 37(17):3907–3913

    Article  Google Scholar 

  40. Garofalo F (1965) Fundamentals of creep and creep-rupture in metals. Macmillan, New York

    Google Scholar 

  41. Goedecke A, Mock R (2009) Creep relaxation of an elastic-perfectly plastic hemisphere in fully plastic contact. ASME J Tribol 131:021407

    Article  Google Scholar 

  42. Brot CC, Etsion I, Kligerman Y (2008) A contact model for a creeping sphere and a rigid flat. Wear 265(5–6):598–605

    Article  Google Scholar 

  43. Persson B (2000) Theory of time-dependent plastic deformation in disordered solids. Phys Rev B 61(9):5949

    Article  Google Scholar 

  44. Cattaneo C (1938) Sul contato di due corpo elastici. Atti Accad Naz Lincei Cl Sci Fis Mat Nat Rend 27:342–348, 434–436, 474–478

    Google Scholar 

  45. Etsion I (2010) Revisiting the Cattaneo–Mindlin concept of interfacial slip in tangentially loaded compliant bodies. ASME J Tribol 132(2):020801, 9 pages

    Article  Google Scholar 

  46. Mindlin RD, Deresiewicz H (1953) Elastic spheres in contact under varying oblique forces. ASME Trans J Appl Mech 20:327–344

    Google Scholar 

  47. Chang WR, Etsion I, Bogy DB (1988) Static friction coefficient model for metallic rough surfaces. ASME J Tribol 110(1):57–63

    Article  Google Scholar 

  48. Brizmer V, Kligerman Y, Etsion I (2007) Elastic–plastic spherical contact under combined normal and tangential loading in full stick. Tribol Lett 25(1):61–70

    Article  Google Scholar 

  49. Jackson RL et al (2007) An analysis of elasto-plastic sliding spherical asperity interaction. Wear 262(1–2):210–219

    Article  Google Scholar 

  50. Boucly V, Nelias D, Green I (2007) Modeling of the rolling and sliding contact between two asperities. J Tribol-Trans ASME 129(2):235–245

    Article  Google Scholar 

  51. Mulvihill DM et al (2011) An elastic–plastic asperity interaction model for sliding friction. Tribol Int 44(12):1679–1694

    Article  Google Scholar 

  52. Bush AW, Gibson RD, Thomas TR (1975) The elastic contact of rough surfaces. Wear 35:87–111

    Article  Google Scholar 

  53. Dwyer-Joyce RS, Reddyhoff T, Zhu J (2011) Ultrasonic measurement for film thickness and solid contact in elastohydrodynamic lubrication. ASME J Tribol 133(3):031501

    Article  Google Scholar 

  54. McBride JW, Cross KC (2008) An experimental investigation of the contact area between a glass plane and both metallic and carbon-nano-tube electrical contacts in proceedings of the 54th IEEE Holm conference on electrical contacts. Orlando, FL

    Google Scholar 

  55. Kotake S et al (2008) Evaluation of electrical contact area between metal and semiconductor using photo-induced current. Tribol Int 41(1):44–48

    Article  Google Scholar 

  56. Jackson RL, Ghaednia H, Yasser AE, Bhavnani S, Knight R (2012) A closed-form multiscale thermal contact resistance model, components, packaging and manufacturing technology. IEEE Trans 2(7):1158–1171

    Google Scholar 

  57. Sainsot P, Jacq C, Nelias D (2002) A numerical model for elastoplastic rough contact. Comput Model Eng Sci 3(4):497–506

    Google Scholar 

  58. Wang F et al. (2009) A multi-Scale model for the simulation and analysis of elasto-plastic contact of real machined surfaces. ASME J Tribol 131:021409-1-6

    Google Scholar 

  59. Stanley HM, Kato T (1997) FFT-based method for rough surface contact. J Tribol Trans ASME 119(3):481–485

    Article  Google Scholar 

  60. Whitehouse DJ, Archard JF (1970) The properties of random surfaces of significance in their contact. Proc R Soc Lond A 316:97–121

    Article  Google Scholar 

  61. Jackson RL, Green I (2003) A statistical model of elasto-plastic asperity contact between rough surfaces in proceedings of the ASME/STLE international tribology conference. Preprint 2003-TRIB102

    Google Scholar 

  62. Polycarpou A, Etsion I (1999) Analytical approximations in modeling contacting rough surfaces. ASME J Tribol 121(2):234–239

    Article  Google Scholar 

  63. Yu N, Polycarpou AA (2004) Combining and contacting of two rough surfaces with asymmetric distribution of asperity heights. J Tribol Trans ASME 126(2):225

    Article  Google Scholar 

  64. Kogut L, Etsion I (2003) A finite element based elastic–plastic model for the contact of rough surfaces. Tribol Trans 46(3):383–390

    Article  Google Scholar 

  65. Greenwood JA, Tripp JH (1971) The contact of two nominally flat rough surfaces. Proc Instn Mech Engrs Part J 185:625–633

    Google Scholar 

  66. Ciavarella M, Delfine G, Demelio G (2006) A “re-vitalized” greenwood and williamson model of elastic contact between fractal surfaces. J Mech Phys Solids 54(12):2569–2591

    Article  Google Scholar 

  67. Greenwood JA (2006) A simplified elliptical model of rough surface contact. Wear 261(2):191–200

    Article  Google Scholar 

  68. McCool JI (1986) Comparison of models for the contact of rough surfaces. Wear 107(1):37–60

    Article  Google Scholar 

  69. Mikic B (1971) Analytical studies of contact of nominally flat surfaces; effect of previous loading. J Lubr Technol Trans ASME 93(4):451–456

    Article  Google Scholar 

  70. Sepehri A, Farhang K (2009) Closed-form equations for three dimensional elastic–plastic contact of nominally flat rough surfaces. J Tribol Trans ASME 131(4)041402–1–8

    Google Scholar 

  71. Jackson RL, Green I (2011) On the modeling of elastic contact between rough surfaces. Tribol Trans 54(2):300–314

    Article  Google Scholar 

  72. McCool JI (1987) Relating profile instrument measurements to the functional performance of rough surfaces. ASME J Tribol 109(2):264–270

    Article  Google Scholar 

  73. Front I (1990) The effects of closing force and surface. Roughness on leakage in radial face seals, MS Thesis. Technion, Israel Institute of Technology

    Google Scholar 

  74. Ciavarella M, Demelio G (2001) Elastic multiscale contact of rough surfaces: Archard’s model revisited and comparisons with modern fractal models. J Appl Mech 68(3):496–498

    Article  Google Scholar 

  75. Ciavarella M et al (2000) Linear elastic contact of the Weierstrass profile. Proc R Soc Lond A 456:387–405

    Article  Google Scholar 

  76. Ciavarella M, Murolo G, Demelio G (2006) On the elastic contact of rough surfaces: numerical experiments and comparisons with recent theories. Wear 261(10):1102–1113

    Article  Google Scholar 

  77. Almeida L et al (2007) Laterally actuated multicontact MEMS relay fabricated using MetalMUMPS process: experimental characterization and multiscale contact modeling. J Micro/Nanolith MEMS MOEMS 6(2):023009

    Article  Google Scholar 

  78. Wilson WE, Angadi SV, Jackson RL (2010) Surface separation and contact resistance considering sinusoidal elastic–plastic multi-scale rough surface contact. Wear 268(1–2):190–201

    Article  Google Scholar 

  79. Jackson RL (2010) An analytical solution to an Archard-type fractal rough surface contact model. Tribol Trans 53(4):543–553

    Article  Google Scholar 

  80. Childs THC (1977) The persistence of roughness between surfaces in static contact. Proc R Soc Lond A 353(1672):35–53

    Article  Google Scholar 

  81. Uppal AH, Probert SD (1973) Plastic contact between a rough and a flat surface. Wear 23(2):173–184

    Article  Google Scholar 

  82. Demkin NB, Izmailov VV (1975) Plastic contact under high normal pressure. Wear 31(2):391–402

    Article  Google Scholar 

  83. Pullen J, Williamson JBP (1972) On the plastic contact of rough surfaces. Proc R Soc Lond A 327(1569):159–173

    Article  Google Scholar 

  84. Johnson KL, Greenwood JA, Higginson JG (1985) The contact of elastic regular wavy surfaces. Int J Mech Sci 27(6):383–396

    Article  Google Scholar 

  85. Drinkwater BW, Dwyer-Joyce RS, Cawley P (1996) A study of the interaction between ultrasound and a partially contacting solid—solid interface. in mathematical, physical and engineering sciences. The Royal Society

    Google Scholar 

  86. Greer JR, Nix WD (2005) Size dependence of mechanical properties of gold at the sub-micron scale. Appl Phys A: Mater Sci Process 80(8):1625–1629

    Article  Google Scholar 

  87. Hyde B, Espinosa HD, Farkas D (2005) An atomistic investigation of elastic and plastic properties of Au nanowires. J Minerals Metals Mater 57(9):62–66

    Article  Google Scholar 

  88. Almeida L et al (2006) Study of the electrical contact resistance of multi-contact MEMS relays fabricated using the MetalMUMPs process. J Micromech Microeng 16(7):1189–1194

    Article  Google Scholar 

  89. Jackson RL (2006) The effect of scale dependant hardness on elasto-plastic asperity contact between rough surfaces. STLE Tribol Trans 49(2):135–150

    Article  Google Scholar 

  90. Jackson RL, Bhavnani SH, Ferguson TP (2006) A multi-scale model of thermal contact resistance between rough surfaces (IMECE2006-15277). In ASME international mechanical engineering congress and exposition. Chicago, IL

    Google Scholar 

  91. Wang H et al (2010) Nanoindentation modeling of a nanodot-patterned surface on a deformable substrate. Int J Solids Struct 47(22–23):3203–3213

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jackson, R.L., Ghaednia, H., Lee, H., Rostami, A., Wang, X. (2013). Contact Mechanics. In: Menezes, P., Nosonovsky, M., Ingole, S., Kailas, S., Lovell, M. (eds) Tribology for Scientists and Engineers. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1945-7_3

Download citation

Publish with us

Policies and ethics